Abstract

A diode laser with a power of 178 mW is used to pump a 2.2% (wt.) Yb3+-doped YLiF4 crystal in an optical extracavity, and a resonant cavity-enhanced laser cooling for Yb3+-doped fluoride crystal is proposed and demonstrated. The pump laser enhancement factor so far obtained is up to 8.6 with the resonant cavity. Given that 82% of incident laser power is absorbed, the cooling efficiency is calculated as 1.08% and the temperature drop is 12.3 K/W. Accordingly, the combination of the diode laser—featuring low cost, long life, small weight, compact volume, and low power consumption—and the simple resonant cavity for laser cooling of solids is promising in some important applications in optical refrigeration of space sensors and detectors, etc.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [CrossRef]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [CrossRef]
  3. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
    [CrossRef]
  4. S. D. Melgarrd, D. V. Seletskiy, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119  K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
    [CrossRef]
  5. S. N. Andrianov and V. V. Samartsev, “Anti-Stokes regime of laser cooling of solids,” Laser Phys. 9, 1021–1025 (1999).
  6. E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
    [CrossRef]
  7. S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20, 38–46 (2010).
    [CrossRef]
  8. J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
    [CrossRef]
  9. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
    [CrossRef]
  10. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
    [CrossRef]
  11. G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
    [CrossRef]
  12. X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
    [CrossRef]
  13. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
    [CrossRef]
  14. S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013).
    [CrossRef]
  15. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
    [CrossRef]
  16. E. S. L. Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21, 24711–24720 (2013).
    [CrossRef]
  17. B. Zhong, J. G. Yin, Y. H. Jia, L. Chen, H. Yin, and J. P. Yin, “Laser cooling of Yb3+-doped LuLiF4 cystal,” Opt. Lett. 39, 2747–2750 (2014).
    [CrossRef]
  18. M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009), Chap. 2, pp. 33–74.
  19. M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
    [CrossRef]
  20. M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE 7614, 761404 (2010).
    [CrossRef]
  21. J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
    [CrossRef]

2014 (1)

2013 (4)

2012 (1)

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

2011 (1)

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
[CrossRef]

2010 (4)

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20, 38–46 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE 7614, 761404 (2010).
[CrossRef]

2009 (2)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[CrossRef]

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
[CrossRef]

2006 (1)

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

2005 (1)

E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
[CrossRef]

2003 (1)

2002 (1)

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

1999 (1)

S. N. Andrianov and V. V. Samartsev, “Anti-Stokes regime of laser cooling of solids,” Laser Phys. 9, 1021–1025 (1999).

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Andrianov, S. N.

S. N. Andrianov and V. V. Samartsev, “Anti-Stokes regime of laser cooling of solids,” Laser Phys. 9, 1021–1025 (1999).

Bashkirov, E. K.

E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Chen, L.

Chen, R. J.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[CrossRef]

DeBarber, P. A.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

Distel, J.

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Filho, E. S. L.

Gong, J.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Greenfield, S.

Hang, Y.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Hasselbeck, M. P.

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
[CrossRef]

He, X. M.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Heeg, B.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE 7614, 761404 (2010).
[CrossRef]

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
[CrossRef]

M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009), Chap. 2, pp. 33–74.

Hoyt, C. W.

Jia, Y. H.

Kashyap, R.

Kaviany, M.

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

Khizhnyak, A.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

Li, D. H.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[CrossRef]

Lieto, A. D.

S. D. Melgarrd, D. V. Seletskiy, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119  K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Loranger, S.

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Melgarrd, S. D.

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

Nemova, G.

Petrushkin, S. V.

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20, 38–46 (2010).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Rand, S. C.

S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013).
[CrossRef]

Ruan, X. L.

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

Rumbles, G.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

Samartsev, V. V.

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20, 38–46 (2010).
[CrossRef]

S. N. Andrianov and V. V. Samartsev, “Anti-Stokes regime of laser cooling of solids,” Laser Phys. 9, 1021–1025 (1999).

Seletskiy, D. V.

S. D. Melgarrd, D. V. Seletskiy, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119  K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

Sheik-Bahae, M.

S. D. Melgarrd, D. V. Seletskiy, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119  K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003).
[CrossRef]

Thiede, J.

Tonelli, M.

S. D. Melgarrd, D. V. Seletskiy, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119  K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Valencia, J.

Xiong, Q. H.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[CrossRef]

Yin, H.

Yin, J. G.

B. Zhong, J. G. Yin, Y. H. Jia, L. Chen, H. Yin, and J. P. Yin, “Laser cooling of Yb3+-doped LuLiF4 cystal,” Opt. Lett. 39, 2747–2750 (2014).
[CrossRef]

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Yin, J. P.

Zhang, J.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[CrossRef]

Zhang, L. H.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Zhang, P. X.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Zhao, C. C.

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Zhong, B.

Appl. Phys. Lett. (1)

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96, 181106 (2010).
[CrossRef]

J. Appl. Phys. (1)

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).
[CrossRef]

J. Lumin. (1)

S. C. Rand, “Raman laser cooling of solids,” J. Lumin. 133, 10–14 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[CrossRef]

Laser Phys. (2)

S. N. Andrianov and V. V. Samartsev, “Anti-Stokes regime of laser cooling of solids,” Laser Phys. 9, 1021–1025 (1999).

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20, 38–46 (2010).
[CrossRef]

Laser Phys. Lett. (1)

J. G. Yin, Y. Hang, X. M. He, L. H. Zhang, C. C. Zhao, J. Gong, and P. X. Zhang, “Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature,” Laser Phys. Lett. 9, 126–130 (2012).
[CrossRef]

Nat. Photonics (1)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010).
[CrossRef]

Nature (2)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[CrossRef]

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493, 504–508 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (1)

E. K. Bashkirov, “Dynamics of phonon mode in superradiance regime of laser cooling of crystals,” Phys. Lett. A 341, 345–351 (2005).
[CrossRef]

Phys. Rev. A (1)

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83, 013404 (2011).
[CrossRef]

Phys. Rev. B (1)

X. L. Ruan and M. Kaviany, “Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders,” Phys. Rev. B 73, 155422 (2006).
[CrossRef]

Proc. SPIE (2)

M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009).
[CrossRef]

M. P. Hehlen, “Crystal-field effects in fluoride crystals for optical refrigeration,” Proc. SPIE 7614, 761404 (2010).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[CrossRef]

Other (1)

M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009), Chap. 2, pp. 33–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle scheme of extracavity enhancement for laser cooling of solids.

Fig. 2.
Fig. 2.

Enhancement factor along with an experimentally measured factor is a function of the reflectivity R1 of the coupler mirror.

Fig. 3.
Fig. 3.

Schematic of the experimental setup to realize laser cooling of Yb3+:YLiF4 crystal in a resonant optical cavity. A diode laser (Toptica DL 100) with a wavelength of 1015 nm is used to excite anti-Stokes luminescence radiation of the sample. A reference signal from a function generator is connected to a lock-in amp and used to modulate the amplitude of the laser by dithering the length of the cavity. The lock-in amplifier demodulates the mixing signal of the reference and detected signal by a pin detector. At the same time, the output signal is amplified by a high-voltage amplifier and fed back to adjust the cavity length so as to stabilize the cavity resonance with the laser. OI, optical isolator; HR, high-reflectivity mirror; λ/2P, half-wavelength plate; ML, mode-matching lens; FG, function generator; HVA, high-voltage amplifier; PIN, pin diode detector; PMT, photomultiplier tube; DA, data acquisition system; PC, personal computer.

Fig. 4.
Fig. 4.

(a) DLT spectrum of the sample with different temperature, which is changed by a semiconductor cooler. (b) Calibration curve of the sample temperature as a function of ΔS, which is obtained by DLT.

Fig. 5.
Fig. 5.

DLT spectrum of the laser-cooled sample in a resonant extracavity after 1 h of cooling, referenced to Te=293.5K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ecav=(1R1)(1+R2exp(αl))(1exp(αl))αl[1R1R2exp(αl)]2.
ΔS(λ,T,T0)=S(λ,T)S(λ,T)dλS(λ,T0)S(λ,T0)dλ,

Metrics