Abstract

It is shown that a planar defect in the stacking sequence of an all-dielectric photonic crystal of garnet spheres strongly supports localized optical guided modes, which originate from Mie resonances of the individual spheres. If the defect breaks space-inversion symmetry and the garnet particles are magnetized inplane, nonreciprocal and lossless transport of light on the defect plane, expected on the basis of group theory in the Voigt–Cotto–Mouton configuration, is demonstrated in ultrathin films of the defect crystal by means of full electrodynamic calculations using the layer-multiple-scattering method properly extended to photonic crystals of gyrotropic spheres.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
    [CrossRef]
  2. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
    [CrossRef]
  3. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
    [CrossRef]
  4. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
    [CrossRef]
  5. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
    [CrossRef]
  6. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
    [CrossRef]
  7. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
    [CrossRef]
  8. V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86, 045403 (2012).
    [CrossRef]
  9. A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
    [CrossRef]
  10. A. Christofi, C. Tserkezis, and N. Stefanou, “Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 146, 34–40 (2014).
    [CrossRef]
  11. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37, 1895–1897 (2012).
    [CrossRef]
  12. P. Kwiecien, V. Kuzmiak, I. Richter, and J. Ctyroky, “Properties of one-way magnetooptic nanostructures in THz range,” in Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, 2013, pp. 730–735.
  13. L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984).
    [CrossRef]
  14. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17, 9276–9281 (2009).
    [CrossRef]
  15. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
    [CrossRef]
  16. K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact nonreciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett. 36, 4254–4256 (2011).
    [CrossRef]
  17. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
    [CrossRef]
  18. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
    [CrossRef]
  19. A. Christofi and N. Stefanou, “Layer multiple scattering calculations for nonreciprocal photonic structures,” Int. J. Mod. Phys. B 28, 1441012 (2014).
    [CrossRef]
  20. G. W. Ford and S. A. Werner, “Scattering and absorption of electromagnetic waves by a gyrotropic sphere,” Phys. Rev. B 18, 6752 (1978).
    [CrossRef]
  21. Z. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004).
    [CrossRef]
  22. J. L. W. Li and W. L. Ong, “A new solution for characterizing electromagnetic scattering by a gyroelectric sphere,” IEEE Trans. Antennas Propag. 59, 3370–3378 (2011).
    [CrossRef]
  23. J. L. W. Li, W. L. Ong, and K. H. R. Zheng, “Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method,” Phys. Rev. E 85, 036601 (2012).
    [CrossRef]
  24. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).
  25. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and its Applications in Physics (Springer, 1990).
  26. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815 (2011).
    [CrossRef]
  27. A. Christofi, N. Stefanou, and N. Papanikolaou, “Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement,” Phys. Rev. B 89, 214410 (2014).
    [CrossRef]
  28. V. Karathanos, A. Modinos, and N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
    [CrossRef]

2014 (3)

A. Christofi, C. Tserkezis, and N. Stefanou, “Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 146, 34–40 (2014).
[CrossRef]

A. Christofi and N. Stefanou, “Layer multiple scattering calculations for nonreciprocal photonic structures,” Int. J. Mod. Phys. B 28, 1441012 (2014).
[CrossRef]

A. Christofi, N. Stefanou, and N. Papanikolaou, “Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement,” Phys. Rev. B 89, 214410 (2014).
[CrossRef]

2013 (1)

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

2012 (4)

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86, 045403 (2012).
[CrossRef]

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

J. L. W. Li, W. L. Ong, and K. H. R. Zheng, “Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method,” Phys. Rev. E 85, 036601 (2012).
[CrossRef]

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37, 1895–1897 (2012).
[CrossRef]

2011 (3)

2010 (1)

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef]

2009 (2)

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17, 9276–9281 (2009).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

2008 (4)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

2004 (1)

Z. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004).
[CrossRef]

2001 (1)

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

2000 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

1994 (1)

V. Karathanos, A. Modinos, and N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

1984 (1)

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984).
[CrossRef]

1978 (1)

G. W. Ford and S. A. Werner, “Scattering and absorption of electromagnetic waves by a gyrotropic sphere,” Phys. Rev. B 18, 6752 (1978).
[CrossRef]

Aizpurua, J.

Baets, R.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Brinkmeyer, E.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Chantada, L.

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

Christofi, A.

A. Christofi, N. Stefanou, and N. Papanikolaou, “Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement,” Phys. Rev. B 89, 214410 (2014).
[CrossRef]

A. Christofi, C. Tserkezis, and N. Stefanou, “Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 146, 34–40 (2014).
[CrossRef]

A. Christofi and N. Stefanou, “Layer multiple scattering calculations for nonreciprocal photonic structures,” Int. J. Mod. Phys. B 28, 1441012 (2014).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

Chui, S. T.

Z. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004).
[CrossRef]

Ctyroky, J.

P. Kwiecien, V. Kuzmiak, I. Richter, and J. Ctyroky, “Properties of one-way magnetooptic nanostructures in THz range,” in Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, 2013, pp. 730–735.

Doerr, C. R.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Drezdzon, S. M.

Eich, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Eyderman, S.

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86, 045403 (2012).
[CrossRef]

Fan, S.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact nonreciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett. 36, 4254–4256 (2011).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Fang, K.

Figotin, A.

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Ford, G. W.

G. W. Ford and S. A. Werner, “Scattering and absorption of electromagnetic waves by a gyrotropic sphere,” Phys. Rev. B 18, 6752 (1978).
[CrossRef]

Freude, W.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Froufe-Pérez, L. S.

García-Etxarri, A.

Gómez-Medina, R.

Grill, W.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984).
[CrossRef]

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Hu, B.

Inui, T.

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and its Applications in Physics (Springer, 1990).

Jalas, D.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Joannopoulos, J. D.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

Karathanos, V.

V. Karathanos, A. Modinos, and N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef]

Kivshar, Y. S.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef]

Krause, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Kuzmiak, V.

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86, 045403 (2012).
[CrossRef]

P. Kwiecien, V. Kuzmiak, I. Richter, and J. Ctyroky, “Properties of one-way magnetooptic nanostructures in THz range,” in Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, 2013, pp. 730–735.

Kwiecien, P.

P. Kwiecien, V. Kuzmiak, I. Richter, and J. Ctyroky, “Properties of one-way magnetooptic nanostructures in THz range,” in Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, 2013, pp. 730–735.

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).

Li, J. L. W.

J. L. W. Li, W. L. Ong, and K. H. R. Zheng, “Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method,” Phys. Rev. E 85, 036601 (2012).
[CrossRef]

J. L. W. Li and W. L. Ong, “A new solution for characterizing electromagnetic scattering by a gyroelectric sphere,” IEEE Trans. Antennas Propag. 59, 3370–3378 (2011).
[CrossRef]

Lin, Z.

Z. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004).
[CrossRef]

Liu, V.

López, C.

Lüthi, B.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984).
[CrossRef]

Melloni, A.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

V. Karathanos, A. Modinos, and N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

Mohler, E.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984).
[CrossRef]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef]

Nieto-Vesperinas, M.

Ong, W. L.

J. L. W. Li, W. L. Ong, and K. H. R. Zheng, “Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method,” Phys. Rev. E 85, 036601 (2012).
[CrossRef]

J. L. W. Li and W. L. Ong, “A new solution for characterizing electromagnetic scattering by a gyroelectric sphere,” IEEE Trans. Antennas Propag. 59, 3370–3378 (2011).
[CrossRef]

Onodera, Y.

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and its Applications in Physics (Springer, 1990).

Papanikolaou, N.

A. Christofi, N. Stefanou, and N. Papanikolaou, “Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement,” Phys. Rev. B 89, 214410 (2014).
[CrossRef]

Petrov, A.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Popovic, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Remer, L.

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984).
[CrossRef]

Renner, H.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Richter, I.

P. Kwiecien, V. Kuzmiak, I. Richter, and J. Ctyroky, “Properties of one-way magnetooptic nanostructures in THz range,” in Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, 2013, pp. 730–735.

Sáenz, J. J.

Scheffold, F.

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef]

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

Stefanou, N.

A. Christofi, N. Stefanou, and N. Papanikolaou, “Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement,” Phys. Rev. B 89, 214410 (2014).
[CrossRef]

A. Christofi, C. Tserkezis, and N. Stefanou, “Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 146, 34–40 (2014).
[CrossRef]

A. Christofi and N. Stefanou, “Layer multiple scattering calculations for nonreciprocal photonic structures,” Int. J. Mod. Phys. B 28, 1441012 (2014).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

V. Karathanos, A. Modinos, and N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

Tanabe, Y.

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and its Applications in Physics (Springer, 1990).

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).

Tserkezis, C.

A. Christofi, C. Tserkezis, and N. Stefanou, “Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 146, 34–40 (2014).
[CrossRef]

Vanwolleghem, M.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86, 045403 (2012).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Vitebsky, I.

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Wang, Q. J.

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

Werner, S. A.

G. W. Ford and S. A. Werner, “Scattering and absorption of electromagnetic waves by a gyrotropic sphere,” Phys. Rev. B 18, 6752 (1978).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Yoshie, T.

Yu, Z.

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact nonreciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett. 36, 4254–4256 (2011).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Zhang, Y.

Zheng, K. H. R.

J. L. W. Li, W. L. Ong, and K. H. R. Zheng, “Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method,” Phys. Rev. E 85, 036601 (2012).
[CrossRef]

Comput. Phys. Commun. (2)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J. L. W. Li and W. L. Ong, “A new solution for characterizing electromagnetic scattering by a gyroelectric sphere,” IEEE Trans. Antennas Propag. 59, 3370–3378 (2011).
[CrossRef]

Int. J. Mod. Phys. B (1)

A. Christofi and N. Stefanou, “Layer multiple scattering calculations for nonreciprocal photonic structures,” Int. J. Mod. Phys. B 28, 1441012 (2014).
[CrossRef]

J. Phys. Condens. Matter (1)

V. Karathanos, A. Modinos, and N. Stefanou, “Planar defects in photonic crystals,” J. Phys. Condens. Matter 6, 6257–6264 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. Christofi, C. Tserkezis, and N. Stefanou, “Multiple scattering calculations for nonreciprocal planar magnetoplasmonic nanostructures,” J. Quant. Spectrosc. Radiat. Transfer 146, 34–40 (2014).
[CrossRef]

Nature (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834 (2008).
[CrossRef]

Phys. Rev. B (5)

V. Kuzmiak, S. Eyderman, and M. Vanwolleghem, “Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field,” Phys. Rev. B 86, 045403 (2012).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

G. W. Ford and S. A. Werner, “Scattering and absorption of electromagnetic waves by a gyrotropic sphere,” Phys. Rev. B 18, 6752 (1978).
[CrossRef]

L. Remer, E. Mohler, W. Grill, and B. Lüthi, “Nonreciprocity in the optical reflection of magnetoplasmas,” Phys. Rev. B 30, 3277 (1984).
[CrossRef]

A. Christofi, N. Stefanou, and N. Papanikolaou, “Periodic structures of magnetic garnet particles for strong Faraday rotation enhancement,” Phys. Rev. B 89, 214410 (2014).
[CrossRef]

Phys. Rev. E (3)

Z. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004).
[CrossRef]

J. L. W. Li, W. L. Ong, and K. H. R. Zheng, “Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method,” Phys. Rev. E 85, 036601 (2012).
[CrossRef]

A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E 63, 066609 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef]

Science (1)

S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38 (2012).
[CrossRef]

Other (3)

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).

T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and its Applications in Physics (Springer, 1990).

P. Kwiecien, V. Kuzmiak, I. Richter, and J. Ctyroky, “Properties of one-way magnetooptic nanostructures in THz range,” in Proceedings of Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, 2013, pp. 730–735.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Photonic band structure of a simple cubic crystal of unmagnetized garnet spheres, with radius to lattice constant ratio S/a=0.3, in air, (see inset) along its [001] direction. Thick and thin lines denote doubly degenerate and nondegenerate bands, respectively. Over the frequency gaps with dotted lines we display the doubly degenerate real frequency lines with the smallest in magnitude imaginary part, which is depicted in the shaded region. (b) Corresponding extinction spectrum for light incident normally on a slab consisting of 16 (001) planes of spheres of the given crystal. In the upper part of the figure we show an enlarged view of the diagrams in the frequency region about the second band gap.

Fig. 2.
Fig. 2.

(a) Five-layers-thick (001) slab of a simple cubic crystal of garnet spheres, in air, with the middle plane displaced by 25% along the [001] direction. The spheres are magnetized along the y direction and their radius is 30% of the lattice constant. Transmittance of the above slab within the hybridization gap of the crystal (see Fig. 1), for s- and p- polarized light [(b) and (c), respectively] incident in the xz plane at an angle θ corresponding to kx=(ω/c)sinθ. The inset displays an enlarged view (b) in the region indicated by the dashed rectangle, with the (+) and (−) signs denoting positive and negative values of kx, respectively.

Fig. 3.
Fig. 3.

Extinction spectra of the slab of Fig. 2 for s-polarized light incident in the xz plane at an angle θ corresponding to (a) |kx|a/2π=0.20, (b) 0.27, and (c) 0.40 [θ=arcsin(kxc/ω)], in the frequency region of the nonreciprocal guided modes. The (+) and (−) signs denote positive and negative values of kx, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϵg=ϵ(1ig0ig10001),
TPlm;Plm=TPl;Pl(m)δmm,
TPlm;Plm=mDmm(l)(α,β,γ)TPl;Pl(m)Dmm(l)(γ,β,α),

Metrics