Abstract

We propose an efficient protocol for complete polarized photons Bell-states and Greenberger–Horne–Zeilinger (GHZ)-states analysis assisted by atoms. With the help of assistant atoms and some simple liner optical elements, the analysis of both polarization Bell states and GHZ states can be performed completely. In our protocol, the assistant atoms are trapped in cavity quantum electronic dynamics (QED), which is feasible with current experimental technology. Moreover, the polarized photons entangled states will not be destroyed in our protocol. Therefore, our scheme might contribute to the quantum communication, quantum computation, and some other fields in quantum information processing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003).
    [CrossRef]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef]
  3. X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
    [CrossRef]
  4. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
    [CrossRef]
  5. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
    [CrossRef]
  6. X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
    [CrossRef]
  7. G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
    [CrossRef]
  8. Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).
  9. B. S. Shi and A. Tomita, “Teleportation of an unknown state by W state,” Phys. Lett. A 296, 161–164 (2002).
    [CrossRef]
  10. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  11. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
    [CrossRef]
  12. E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
    [CrossRef]
  13. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  14. D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), p. 69.
  15. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
  16. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
    [CrossRef]
  17. J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301(R) (2002).
    [CrossRef]
  18. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
    [CrossRef]
  19. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
    [CrossRef]
  20. J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
    [CrossRef]
  21. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
    [CrossRef]
  22. J. W. Pan and A. Zeilinger, “Greenberger-Horne-Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
    [CrossRef]
  23. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
    [CrossRef]
  24. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [CrossRef]
  25. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
    [CrossRef]
  26. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
    [CrossRef]
  27. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
    [CrossRef]
  28. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
    [CrossRef]
  29. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
    [CrossRef]
  30. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
    [CrossRef]
  31. T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
    [CrossRef]
  32. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
    [CrossRef]
  33. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
    [CrossRef]
  34. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
    [CrossRef]
  35. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [CrossRef]
  36. X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
    [CrossRef]
  37. X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled,” Phys. Rev. A 74, 044305 (2006).
    [CrossRef]
  38. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
    [CrossRef]
  39. M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
    [CrossRef]
  40. J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
    [CrossRef]
  41. Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
    [CrossRef]
  42. J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
    [CrossRef]
  43. Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
    [CrossRef]
  44. W. Xiong and L. Ye, “Optimal real state quantum cloning machine in cavity quantum electrodynamics,” J. Opt. Soc. Am. B 28, 2260–2264 (2011).
    [CrossRef]
  45. B. L. Fang, T. Wu, and L. Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012).
    [CrossRef]
  46. Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008).
    [CrossRef]
  47. X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
    [CrossRef]
  48. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
    [CrossRef]
  49. H. Goto and K. Ichimura, “Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting,” Phys. Rev. A 72, 054301 (2005).
    [CrossRef]

2012 (1)

B. L. Fang, T. Wu, and L. Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012).
[CrossRef]

2011 (1)

2010 (1)

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

2009 (1)

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

2008 (4)

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[CrossRef]

Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

2007 (6)

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[CrossRef]

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
[CrossRef]

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

2006 (7)

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

2005 (6)

H. Goto and K. Ichimura, “Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting,” Phys. Rev. A 72, 054301 (2005).
[CrossRef]

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

2004 (5)

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

2003 (2)

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003).
[CrossRef]

2002 (3)

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

B. S. Shi and A. Tomita, “Teleportation of an unknown state by W state,” Phys. Lett. A 296, 161–164 (2002).
[CrossRef]

J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301(R) (2002).
[CrossRef]

1999 (2)

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

1998 (3)

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[CrossRef]

J. W. Pan and A. Zeilinger, “Greenberger-Horne-Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

1997 (1)

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
[CrossRef]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

1964 (1)

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).

Aspelmeyer, M.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

Barbieri, M.

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Barreiro, J. T.

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Barrett, S. D.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Beausoleil, R. G.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Bell, J. S.

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Beveratos, A.

J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
[CrossRef]

Bourennane, M.

M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Brunner, N.

J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
[CrossRef]

Calsamiglia, J.

J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301(R) (2002).
[CrossRef]

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Ceccarelli, R.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

Cinelli, C.

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

De Martini, F.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Deng, F. G.

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Deng, Z. J.

Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
[CrossRef]

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Eibl, M.

M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Fang, B. L.

B. L. Fang, T. Wu, and L. Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012).
[CrossRef]

Feng, L.

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Feng, M.

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
[CrossRef]

Fu, C. B.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).

Gao, J.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Gao, K. L.

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
[CrossRef]

Gisin, N.

J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
[CrossRef]

Gorbachev, V. N.

V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003).
[CrossRef]

Gordon, G.

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

Goto, H.

H. Goto and K. Ichimura, “Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting,” Phys. Rev. A 72, 054301 (2005).
[CrossRef]

Greenberger, D. M.

D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), p. 69.

Guo, G. C.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Guo, J. L.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[CrossRef]

Hai, Z. W.

Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008).
[CrossRef]

Han, Z. F.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Horne, M. A.

D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), p. 69.

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

Hwang, M. R.

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Ichimura, K.

H. Goto and K. Ichimura, “Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting,” Phys. Rev. A 72, 054301 (2005).
[CrossRef]

Jennewein, T.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Ju, Y. H.

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Juan, H.

Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008).
[CrossRef]

Jung, E.

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Kaltenbaek, R.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

Karlsson, A.

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[CrossRef]

Kim, H. S.

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Kim, M. S.

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Kimble, H. J.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Kok, P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

Kwiat, P. G.

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Li, C. Y.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Li, K.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

Li, X. H.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Lin, X. M.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Lindenthal, M.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

Liu, X. S.

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Liu, Y.

Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008).
[CrossRef]

Long, G. L.

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Lütkenhaus, N.

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Mataloni, P.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

Mattle, K.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

Monken, C. H.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Munro, W. J.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

Nemoto, K.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

Nie, J.

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[CrossRef]

Pádua, S.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Pan, J. W.

J. W. Pan and A. Zeilinger, “Greenberger-Horne-Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

Park, D.

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

Rigolin, G.

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

Rodichkina, A. A.

V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003).
[CrossRef]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

Sheng, Y. B.

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

Shi, B. S.

B. S. Shi and A. Tomita, “Teleportation of an unknown state by W state,” Phys. Lett. A 296, 161–164 (2002).
[CrossRef]

Song, H. S.

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[CrossRef]

Song, J.

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[CrossRef]

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[CrossRef]

Spiller, T. P.

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Suominen, K. A.

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

Tomita, A.

B. S. Shi and A. Tomita, “Teleportation of an unknown state by W state,” Phys. Lett. A 296, 161–164 (2002).
[CrossRef]

Tong, D. M.

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

Trubilko, A. I.

V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003).
[CrossRef]

Um, C. I.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).

Ursin, R.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

Vaidman, L.

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

Vallone, G.

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

van Houwelingen, J. A. W.

J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
[CrossRef]

Walborn, S. P.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

Walther, P.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

Wei, H.

Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
[CrossRef]

Wei, T. C.

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[CrossRef]

Weinfurter, H.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wu, T.

B. L. Fang, T. Wu, and L. Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012).
[CrossRef]

Xia, Y.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[CrossRef]

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[CrossRef]

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).

Xiao, Y. F.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Xiong, W.

Yang, Y.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Ye, L.

B. L. Fang, T. Wu, and L. Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012).
[CrossRef]

W. Xiong and L. Ye, “Optimal real state quantum cloning machine in cavity quantum electrodynamics,” J. Opt. Soc. Am. B 28, 2260–2264 (2011).
[CrossRef]

Ye, M. Y.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Yeon, K. H.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).

Yoo, S. K.

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

Yoran, N.

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

Zbinden, H.

J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
[CrossRef]

Zeilinger, A.

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

J. W. Pan and A. Zeilinger, “Greenberger-Horne-Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), p. 69.

Zhang, S.

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).

Zhang, S. L.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

Zhang, X. L.

Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
[CrossRef]

Zhen, Y.

Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008).
[CrossRef]

Zhiliba, A. I.

V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003).
[CrossRef]

Zhou, H. Y.

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Zhou, P.

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

Zhou, Z. W.

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Zou, X. B.

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Commun. Theor. Phys. (1)

Y. Zhen, Z. W. Hai, H. Juan, and Y. Liu, “Scheme to implement optimal symmetric 1 → 2 universal quantum telecloning through cavity-assisted interaction,” Commun. Theor. Phys. 50, 1096–1100 (2008).
[CrossRef]

Eur. Phys. J. D (1)

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006).
[CrossRef]

Europhys. Lett. (2)

J. Song, Y. Xia, H. S. Song, J. L. Guo, and J. Nie, “Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities,” Europhys. Lett. 80, 60001 (2007).
[CrossRef]

B. L. Fang, T. Wu, and L. Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388–392 (2005).

J. Mod. Opt. (1)

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006).
[CrossRef]

Nature (1)

R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004).
[CrossRef]

Phys. Lett. A (2)

B. S. Shi and A. Tomita, “Teleportation of an unknown state by W state,” Phys. Lett. A 296, 161–164 (2002).
[CrossRef]

V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003).
[CrossRef]

Phys. Rev. A (25)

X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002).
[CrossRef]

F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005).
[CrossRef]

G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
[CrossRef]

L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999).
[CrossRef]

J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301(R) (2002).
[CrossRef]

N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999).
[CrossRef]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[CrossRef]

E. Jung, M. R. Hwang, Y. H. Ju, M. S. Kim, S. K. Yoo, H. S. Kim, and D. Park, “Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008).
[CrossRef]

J. W. Pan and A. Zeilinger, “Greenberger-Horne-Zeilinger-state analyzer,” Phys. Rev. A 57, 2208–2211 (1998).
[CrossRef]

M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007).
[CrossRef]

X. B. Zou, S. L. Zhang, K. Li, and G. C. Guo, “Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors,” Phys. Rev. A 75, 034302 (2007).
[CrossRef]

X. B. Zou, K. Li, and G. C. Guo, “Linear optical scheme for direct implementation of a nondestructive N-qubit controlled,” Phys. Rev. A 74, 044305 (2006).
[CrossRef]

M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[CrossRef]

G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009).
[CrossRef]

S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
[CrossRef]

Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
[CrossRef]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[CrossRef]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[CrossRef]

T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75, 060305(R) (2007).
[CrossRef]

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[CrossRef]

Z. J. Deng, X. L. Zhang, H. Wei, K. L. Gao, and M. Feng, “Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference,” Phys. Rev. A 76, 044305 (2007).
[CrossRef]

X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323 (2006).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

H. Goto and K. Ichimura, “Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting,” Phys. Rev. A 72, 054301 (2005).
[CrossRef]

Phys. Rev. Lett. (10)

M. Eibl, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004).
[CrossRef]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[CrossRef]

K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Physics (1)

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).

Other (1)

D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), p. 69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the CPF gate with single-photon pulse and atom.

Fig. 2.
Fig. 2.

Schematic diagram of the devices for the atom-assisted Bell-state analysis.

Fig. 3.
Fig. 3.

Schematic diagram of the devices for the atom-assisted three-photon GHZ analysis.

Tables (3)

Tables Icon

Table 1. Process of the Bell-States Analysis

Tables Icon

Table 2. Measurement Results of Atom States with Corresponding Bell States

Tables Icon

Table 3. Measurement Results of Atom States with Corresponding GHZ States

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

UCPF=eiπ|11||HH|.
|+=12(|0+|1),|=12(|0|1).
|ϕ+ab=12(|HH+|VV)ab,|ϕab=12(|HH|VV)ab,|ψ+ab=12(|HV+|VH)ab,|ψab=12(|HV|VH)ab.
|Ψ1=|ϕ+ab|+,+12=12(|HH+|VV)ab|+,+12.
|Ψ2=12(|HH+|VV)ab|+,+12.
|Ψ3=|ϕab|+,+12=12(|HH|VV)ab|+,+12.
|Ψ4=12(|HV+|VH)ab|+,+12.
|Ψ5=12(|HV+|VH)ab|+,12.
|Ψ6=12(|HH|VV)ab|+,12.
|Ψ7=|ψ+ab|+,+12=12(|HV+|VH)ab|+,+12.
|Ψ8=12(|HV+|VH)ab|,+12.
|Ψ9=12(|HH|VV)ab|,+12.
|Ψ10=12(|HV+|VH)ab|,+12.
|Ψ11=|ψab|+,+12=12(|HV|VH)ab|+,+12.
|Ψ12=12(|HV|VH)ab|,+12.
|Ψ13=12(|VH|HV)ab|,+12.
|Ψ15=12(|HV|VH)ab|,12.
|Φ±abc1=12(|HHH±|VVV)abc,|Φ±abc2=12(|HHV±|VVH)abc,|Φ±abc3=12(|HVH±|VHV)abc,|Φ±abc4=12(|VHH±|HVV)abc.
|Φ+abc1|Φ+abc1=12(|HHH+|HVV+|VHV+|VVH)abc,|Φabc1|Φabc1=12(|HHV+|HVH+|VHH+|VVV)abc,|Φ+abc2|Φ+abc2=12(|HHH|HVV|VHV+|VVH)abc,|Φabc2|Φabc2=12(|HVH|HHV+|VHH|VVV)abc,|Φ+abc3|Φ+abc3=12(|HHH|HVV+|VHV|VVH)abc,|Φabc3|Φabc3=12(|HHV|HVH+|VHH|VVV)abc,|Φ+abc4|Φ+abc4=12(|HHH+|HVV|VHV|VVH)abc,|Φabc4|Φabc4=12(|HHV+|HVH|VHH|VVV)abc.
|Ψ1=|Φ+abc1|+,+,123,|Ψ2=|Φabc1|+,+,+123,|Ψ3=|Φ+abc2|+,,123,|Ψ4=|Φabc2|+,,+123,|Ψ5=|Φ+abc3|,,123,|Ψ6=|Φabc3|,,+123,|Ψ7=|Φ+abc4|,+,123,|Ψ8=|Φabc4|,+,+123.

Metrics