Abstract

We conducted a theoretical investigation of the optical steady-state behavior in N four-level Y-type atoms driven coherently by a probe laser and a single elliptically polarized field (EPF) by means of a unidirectional ring cavity. It was found that the optical bistability can be observed for a wide regime of frequency detuning of the probe field, intensity of the EPF, and the atomic cooperation parameter. Interestingly, in principle the optical steady-state behavior can be switched from optical bistability to multistability or vice versa by adjusting the phase difference between two components of the polarized electric field of the EPF if the perfect spontaneously generated coherence of atoms is included. Our results illustrate the potential to utilize EPF for all-optical switching in atomic systems through the phase control, as well as provide guidance in the design for possible experimental implementations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription