Abstract

Light trapping in a waveguide configuration consisting of a thin planar film of hydrogenated amorphous silicon (aSi:H) on a planar silver backreflector is studied theoretically and experimentally. Light trapping is achieved by scattering of light from a silver or silicon nanostrip placed directly on the silicon-film surface. For thin films it is appropriate to think of light trapping in terms of coupling into the guided modes of the air-aSi:H-silver waveguide configuration, which is the focus of this paper. Using the Green’s function surface integral equation method we calculate cross sections governing extinction, out-of-plane scattering, and scattering into guided modes. It is found for geometries with aSi:H-film thicknesses in the range of 50–500 nm that distinct peaks in extinction and scattering cross-section spectra are located at wavelengths determined by the cutoff wavelengths of guided modes, and the wavelengths of those peaks are insensitive to the precise geometry of the scatterer. Measurements of extinction and scattering from an array of silver strips spaced by a large distance of 10 μm on the surface of a geometry with a 290 nm aSi:H-film are found to be in good agreement with theoretical predictions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef]
  2. P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
    [CrossRef]
  3. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
    [CrossRef]
  4. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
    [CrossRef]
  5. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  7. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
    [CrossRef]
  8. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
    [CrossRef]
  9. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
    [CrossRef]
  10. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906–1913 (2000).
    [CrossRef]
  11. J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
    [CrossRef]
  12. Z. Yu and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
    [CrossRef]
  13. M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
    [CrossRef]
  14. J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).
  15. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011).
    [CrossRef]
  16. U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
    [CrossRef]
  17. Y.-C. Tsao, C. Fisker, and T. G. Pedersen, “Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: critical role of absorber front textures,” Opt. Express 22, A651–A662 (2014).
    [CrossRef]
  18. C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
    [CrossRef]
  19. R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).
  20. J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
    [CrossRef]
  21. T. Søndergaard, V. Siahpoush, and J. Jung, “Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip,” Phys. Rev. B 86, 085455 (2012).
    [CrossRef]
  22. A. E. Siegmann, “Lasers without photons—or should it be lasers with too many photons?” Appl. Phys. B 60, 247–257 (1995).
    [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  24. C. Fisker and T. G. Pedersen, “Opimization of imprintable nanostructured a-si solar cells: FDTD study,” Opt. Express 21, A208–A220 (2013).
    [CrossRef]
  25. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  26. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008).
    [CrossRef]
  27. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
    [CrossRef]
  28. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009).
    [CrossRef]
  29. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
    [CrossRef]
  30. http://refractiveindex.info/legacy/?group=CRYSTALS&material=a-Si (downloaded July3, 2014).

2014 (1)

2013 (3)

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

C. Fisker and T. G. Pedersen, “Opimization of imprintable nanostructured a-si solar cells: FDTD study,” Opt. Express 21, A208–A220 (2013).
[CrossRef]

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

2012 (5)

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

T. Søndergaard, V. Siahpoush, and J. Jung, “Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip,” Phys. Rev. B 86, 085455 (2012).
[CrossRef]

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
[CrossRef]

2011 (4)

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011).
[CrossRef]

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Z. Yu and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[CrossRef]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

2009 (1)

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009).
[CrossRef]

2008 (3)

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

2007 (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

2005 (2)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

2000 (1)

1998 (1)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

1997 (1)

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

1996 (1)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

1995 (1)

A. E. Siegmann, “Lasers without photons—or should it be lasers with too many photons?” Appl. Phys. B 60, 247–257 (1995).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Albrektsen, O.

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Askarov, D.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Atwater, H. A.

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Barnard, E. S.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Beck, F. J.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[CrossRef]

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Bozhevolnyi, S. I.

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20, 13311–13319 (2012).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

Brongersma, M.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Carius, R.

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011).
[CrossRef]

Catchpole, K. R.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Charriére, M.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Colas des Francs, G.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

de Waele, R.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[CrossRef]

Dereux, A.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Escarre, J.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Fan, S.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Z. Yu and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Ferry, V. E.

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

Fisker, C.

Garnett, E. C.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Grandidier, J.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Hecht, B.

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

Holmgaard, T.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jung, J.

T. Søndergaard, V. Siahpoush, and J. Jung, “Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip,” Phys. Rev. B 86, 085455 (2012).
[CrossRef]

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009).
[CrossRef]

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

Larsen, A. N.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Lenzmann, F.

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

Liu, J. S. Q.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Markey, L.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

Massenot, S.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Meier, M.

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

Mertz, J.

Mokkapati, S.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[CrossRef]

Moulin, E.

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011).
[CrossRef]

Müller, J.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Nielsen, B. B.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Nielsen, M. G.

Novotny, L.

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

Paetzold, U. W.

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011).
[CrossRef]

Pala, R. A.

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Pedersen, K.

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Pedersen, T. G.

Pieters, B. E.

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Pohl, D. W.

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

Polman, A.

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Pors, A.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rau, U.

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19, A1219–A1230 (2011).
[CrossRef]

Rech, B.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Reetz, W.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

Siahpoush, V.

T. Søndergaard, V. Siahpoush, and J. Jung, “Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip,” Phys. Rev. B 86, 085455 (2012).
[CrossRef]

Siegmann, A. E.

A. E. Siegmann, “Lasers without photons—or should it be lasers with too many photons?” Appl. Phys. B 60, 247–257 (1995).
[CrossRef]

Smirnov, V.

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

Søderstrøm, K.

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Søndergaard, T.

T. Søndergaard, V. Siahpoush, and J. Jung, “Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip,” Phys. Rev. B 86, 085455 (2012).
[CrossRef]

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009).
[CrossRef]

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

Spinelli, P.

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

Springer, J.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Tsao, Y.-C.

van de Groep, H.

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

van Lare, M.

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

Vanecek, M.

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Verschuuren, M. A.

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

Weeber, J.-C.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Yu, Z.

Z. Yu and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[CrossRef]

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Søderstrøm, J. Escarre, F.-J. Haug, M. Charriére, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6, 2790–2797 (2012).
[CrossRef]

Appl. Phys. A (1)

Z. Yu and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011).
[CrossRef]

Appl. Phys. B (1)

A. E. Siegmann, “Lasers without photons—or should it be lasers with too many photons?” Appl. Phys. B 60, 247–257 (1995).
[CrossRef]

Appl. Phys. Lett. (7)

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization,” Appl. Phys. Lett. 92, 011124 (2008).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric-loaded surface plasmon polariton waveguides on a finite-width metal strip,” Appl. Phys. Lett. 96, 063105 (2010).
[CrossRef]

M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Appl. Phys. Lett. 101, 221110 (2012).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997).
[CrossRef]

J. Opt. (1)

P. Spinelli, V. E. Ferry, H. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonics light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light-trapping in plasmonic solar cells,” J. Phys. D 44, 185101 (2011).
[CrossRef]

Mater. Sci. Eng., B (1)

U. W. Paetzold, M. Meier, E. Moulin, V. Smirnov, B. E. Pieters, U. Rau, and R. Carius, “Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells,” Mater. Sci. Eng., B 178, 630–634 (2013).
[CrossRef]

Nat. Commun. (1)

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 6, 2095 (2013).

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (5)

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79, 035401 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

T. Søndergaard, V. Siahpoush, and J. Jung, “Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip,” Phys. Rev. B 86, 085455 (2012).
[CrossRef]

J. Jung, T. Søndergaard, T. G. Pedersen, K. Pedersen, A. N. Larsen, and B. B. Nielsen, “Dyadic Green’s functions of thin films: applications within plasmonic solar cells,” Phys. Rev. B 83, 085419 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. Springer, B. Rech, W. Reetz, J. Müller, and M. Vanecek, “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates,” Sol. Energy Mater. Sol. Cells 85, 1–11 (2005).

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

http://refractiveindex.info/legacy/?group=CRYSTALS&material=a-Si (downloaded July3, 2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Illustration of light incident on a geometry with a silver or silicon nanostrip of width w and thickness t placed on a thin planar silicon film of thickness d on silver. The nanostrip scatters light into out-of-plane propagating modes and into guided modes of the air-silicon-silver waveguide geometry.

Fig. 2.
Fig. 2.

Real part (nr) and imaginary part (ni) of the refractive index of hydrogenated amorphous silicon (aSi:H) used for calculations in this paper.

Fig. 3.
Fig. 3.

Cross sections for extinction, out-of-plane scattering, absorption in the nanostrip, and for scattering into guided modes for the geometry in Fig. 1 for s polarization with all material losses included, and for a silver nanostrip with dimensions t=25nm and w=60nm, and film thicknesses d=50, 150, 250, and 500 nm.

Fig. 4.
Fig. 4.

Real part (nr) and imaginary part (ni) of the mode index for the modes of an air-aSi:H-silver waveguide geometry for aSi:H-film-thicknesses d=50, 150, 250, and 500 nm.

Fig. 5.
Fig. 5.

Cross sections for extinction, out-of-plane scattering, absorption in the nanostrip, and for scattering into guided modes for the geometry in Fig. 1 for p polarization with all material losses included, and for a silver nanostrip with dimensions t=25nm and w=60nm, and film thicknesses d=50, 150, 250, and 500 nm.

Fig. 6.
Fig. 6.

Real part (nr) and imaginary part (ni) of the mode index for the modes of an air-aSi:H-silver waveguide geometry for aSi:H-film-thicknesses d=50, 150, 250, and 500 nm.

Fig. 7.
Fig. 7.

Cross sections for extinction, out-of-plane scattering, absorption in the nanostrip, and for scattering into guided modes for the geometry in Fig. 1 for s polarization with all material losses included, and for a silicon (aSi:H) nanostrip with dimensions t=25nm and w=60nm, and film thicknesses d=50, 150, 250, and 500 nm.

Fig. 8.
Fig. 8.

Cross sections for extinction, out-of-plane scattering, absorption in the nanostrip, and for scattering into guided modes for the geometry in Fig. 1 for p polarization with all material losses included, and for a silicon (aSi:H) nanostrip with dimensions t=25nm and w=60nm, and film thicknesses d=50, 150, 250, and 500 nm.

Fig. 9.
Fig. 9.

(a) SEM image of silver nanostrips on aSi:H-silver waveguide geometry illustrating also stitching between neighbor writing areas. (b) AFM image of a single nanostrip. (c) Cross section of AFM image of a single nanostrip.

Fig. 10.
Fig. 10.

Experimental measurement and theoretical calculation for a geometry similar to Fig. 1 for s polarization and silver strips with w=175nm, t=45nm, and a silicon film with thickness d=290nm. In the experimental structure there is a periodic array of strips spaced by 10 μm while in the theoretical calculation there is only one strip.

Fig. 11.
Fig. 11.

Same as in Fig. 10 except that here we used p-polarized light.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E(r)=z^E(x,y),
E0(r)=z^Ei(eik0nairy+r(s)eik0nairy),
σabs(s)=1|Ei|2k0nairIm(n^·E(r))E*(r)dl,
E(r)=E0(r)+{E(s)n^·g(r,s)g(r,s)n^·E(s)}dl,
g(ff)(r,r)=eikriπ/44r2πkeikcosθx×(eiksinθy+r(s)(θ)eiksinθy),
σscat(s)=1|Ei|2θ=0θ=π|Esc(ff)(r)|2rdθ.
σext(s)=22πk0nairIm{r(s)(θr)(fsc(s)(θr))*},
fsc(s)(θ)=limr{eik0nairreiπ/4rEsc(r,θ)Ei}.
g(guided)(r,r)=A(kxp)eikxp|xx|eiky(y+y),
A(kxp)=12limkxkxp1kyr(s)(kx)(kxkxp),

Metrics