Abstract

We use numerical solutions of macroscopic Maxwell’s equations to study spontaneous emission rates of model spherical quantum dot (QD) emitters in the vicinity of a highly polarizable dielectric substrate. It is demonstrated that extra polarization of the QD body taking place in the interfacial region may lead to appreciable deviations from the rates that would be expected under the assumption of a fixed magnitude of the effective QD transition dipole moment. Illustrations are given for both radiative and nonradiative decay processes, and potential experimental implications are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).
    [CrossRef]
  2. D. V. Talapin and J. Steckel, “Quantum dot lightemitting devices,” MRS Bulletin 38, 685–691 (2013).
    [CrossRef]
  3. S. Lu and A. Madhukar, “Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels,” Nano Lett. 7, 3443–3451 (2007).
    [CrossRef]
  4. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
    [CrossRef]
  5. S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
    [CrossRef]
  6. H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
    [CrossRef]
  7. H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
    [CrossRef]
  8. O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
    [CrossRef]
  9. P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
    [CrossRef]
  10. M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
    [CrossRef]
  11. H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013).
    [CrossRef]
  12. W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).
  13. V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
    [CrossRef]
  14. D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
    [CrossRef]
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  16. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.
  17. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  18. L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
    [CrossRef]
  19. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
    [CrossRef]
  20. A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).
  21. A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).
  22. L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
    [CrossRef]
  23. C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
    [CrossRef]
  24. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
    [CrossRef]
  25. D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
    [CrossRef]
  26. H. Fröhlich, Theory of Dielectrics (Clarendon, 1949).
  27. C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, 1973).
  28. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).
  29. K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photon. 4, 1–77 (2012).
    [CrossRef]
  30. P. de Vries and A. Lagendijk, “Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects,” Phys. Rev. Lett. 81, 1381–1384 (1998).
    [CrossRef]
  31. P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
    [CrossRef]
  32. M. E. Crenshaw, “Comparison of quantum and classical local field effects on two-level atoms in a dielectric,” Phys. Rev. A 78, 053827 (2008).
    [CrossRef]
  33. M. Donaire, “Electromagnetic vacuum of complex media: dipole emission versus light propagation, vacuum energy, and local field factors,” Phys. Rev. A 83, 022502 (2011).
    [CrossRef]
  34. A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002).
    [CrossRef]
  35. S. V. Goupalov, “Light scattering on exciton resonance in a semiconductor quantum dot: exact solution,” Phys. Rev. B 68, 125311 (2003).
    [CrossRef]
  36. S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
    [CrossRef]
  37. M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
    [CrossRef]
  38. P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013).
    [CrossRef]
  39. K. J. Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
    [CrossRef]
  40. Y. N. Gartstein and V. M. Agranovich, “Excitons in long molecular chains near the reflecting interface,” Phys. Rev. B 76, 115329 (2007).
    [CrossRef]
  41. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
    [CrossRef]
  42. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  43. Expression (2) refers to the radiative decay rate. If the embedding medium is dissipative, the decay rate can increase substantially due to the absorption in the medium, particularly due to nonradiative energy transfer, and becomes sensitively dependent on radius a of the spherical cavity [28,50]. For small cavities, the NRET contribution that scales ∝1/a3 can dominate. In the weakly absorbing dielectric, εm′′≪εm′, the NRET contribution corresponds to the absorption due to the electrostatic-like field produced by the effective dipole (3), where one could approximately use just the real part, εm′, of the dielectric constant.
  44. http://www.comsol.com/ .
  45. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
    [CrossRef]
  46. J. M. Gordon and Y. N. Gartstein, “Dielectric polarization, anisotropy and nonradiative energy transfer into nanometer-scale thin semiconducting films,” J. Phys. Condens. Matter 25, 425302 (2013).
    [CrossRef]
  47. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
    [CrossRef]
  48. H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
    [CrossRef]
  49. A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
    [CrossRef]
  50. S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
    [CrossRef]

2013 (5)

D. V. Talapin and J. Steckel, “Quantum dot lightemitting devices,” MRS Bulletin 38, 685–691 (2013).
[CrossRef]

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013).
[CrossRef]

P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013).
[CrossRef]

J. M. Gordon and Y. N. Gartstein, “Dielectric polarization, anisotropy and nonradiative energy transfer into nanometer-scale thin semiconducting films,” J. Phys. Condens. Matter 25, 425302 (2013).
[CrossRef]

2012 (4)

K. Dolgaleva and R. W. Boyd, “Local-field effects in nanostructured photonic materials,” Adv. Opt. Photon. 4, 1–77 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
[CrossRef]

2011 (6)

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

M. Donaire, “Electromagnetic vacuum of complex media: dipole emission versus light propagation, vacuum energy, and local field factors,” Phys. Rev. A 83, 022502 (2011).
[CrossRef]

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

2010 (2)

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).
[CrossRef]

2009 (2)

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

2008 (3)

M. E. Crenshaw, “Comparison of quantum and classical local field effects on two-level atoms in a dielectric,” Phys. Rev. A 78, 053827 (2008).
[CrossRef]

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

2007 (2)

Y. N. Gartstein and V. M. Agranovich, “Excitons in long molecular chains near the reflecting interface,” Phys. Rev. B 76, 115329 (2007).
[CrossRef]

S. Lu and A. Madhukar, “Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels,” Nano Lett. 7, 3443–3451 (2007).
[CrossRef]

2006 (1)

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

2004 (3)

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef]

2003 (2)

S. V. Goupalov, “Light scattering on exciton resonance in a semiconductor quantum dot: exact solution,” Phys. Rev. B 68, 125311 (2003).
[CrossRef]

K. J. Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[CrossRef]

2002 (1)

A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002).
[CrossRef]

1999 (1)

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[CrossRef]

1998 (1)

P. de Vries and A. Lagendijk, “Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects,” Phys. Rev. Lett. 81, 1381–1384 (1998).
[CrossRef]

1985 (1)

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

1979 (1)

D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
[CrossRef]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
[CrossRef]

1926 (1)

A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).

Agranovich, V. M.

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

Y. N. Gartstein and V. M. Agranovich, “Excitons in long molecular chains near the reflecting interface,” Phys. Rev. B 76, 115329 (2007).
[CrossRef]

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).

Ahn, K. J.

K. J. Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[CrossRef]

Alivisatos, A. P.

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Andersen, M. L.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Andreakou, P.

P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
[CrossRef]

Andreani, L. C.

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

Asano, T.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Aureau, D.

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Barwicz, T.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Benedetti, W. J. I. D.

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

Berman, P. R.

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef]

Bernechea, M.

P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
[CrossRef]

Blanco, L. A.

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

Böttcher, C. J. F.

C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, 1973).

Boyd, R. W.

Brossard, M.

P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
[CrossRef]

Bussian, D.

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

Bussian, D. A.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Caillard, L.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

Caillard, L. M.

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

Casson, J. L.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Chabal, Y. J.

H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013).
[CrossRef]

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

Chanyawadee, S.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Chen, Y.

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Chiles, C.

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

Creatore, C.

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

Crenshaw, M. E.

M. E. Crenshaw, “Comparison of quantum and classical local field effects on two-level atoms in a dielectric,” Phys. Rev. A 78, 053827 (2008).
[CrossRef]

de Abajo, F. J. G.

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

de Mello Donegá, C.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

de Vries, P.

P. de Vries and A. Lagendijk, “Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects,” Phys. Rev. Lett. 81, 1381–1384 (1998).
[CrossRef]

DeBenedetti, W.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
[CrossRef]

Dolgaleva, K.

Donaire, M.

M. Donaire, “Electromagnetic vacuum of complex media: dipole emission versus light propagation, vacuum energy, and local field factors,” Phys. Rev. A 83, 022502 (2011).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

Ell, C.

A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002).
[CrossRef]

Fröhlich, H.

H. Fröhlich, Theory of Dielectrics (Clarendon, 1949).

Galanin, M. D.

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).

Gartstein, Y. N.

H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013).
[CrossRef]

J. M. Gordon and Y. N. Gartstein, “Dielectric polarization, anisotropy and nonradiative energy transfer into nanometer-scale thin semiconducting films,” J. Phys. Condens. Matter 25, 425302 (2013).
[CrossRef]

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

Y. N. Gartstein and V. M. Agranovich, “Excitons in long molecular chains near the reflecting interface,” Phys. Rev. B 76, 115329 (2007).
[CrossRef]

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

Gibbs, H. M.

A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002).
[CrossRef]

Gordon, J. M.

J. M. Gordon and Y. N. Gartstein, “Dielectric polarization, anisotropy and nonradiative energy transfer into nanometer-scale thin semiconducting films,” J. Phys. Condens. Matter 25, 425302 (2013).
[CrossRef]

Goupalov, S. V.

S. V. Goupalov, “Light scattering on exciton resonance in a semiconductor quantum dot: exact solution,” Phys. Rev. B 68, 125311 (2003).
[CrossRef]

Guha, S.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Harley, R. T.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Harris, C. B.

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Harris, D.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Henini, M.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Hollingsworth, J. A.

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Htoon, H.

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Huisman, S. R.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Ketterson, J. B.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

Khitrova, G.

A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002).
[CrossRef]

Klimov, V. I.

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Knöll, L.

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[CrossRef]

Knorr, A.

K. J. Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[CrossRef]

Konstantatos, G.

P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
[CrossRef]

Kovalenko, M. V.

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).
[CrossRef]

Kristensen, P. T.

P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013).
[CrossRef]

Lagendijk, A.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

P. de Vries and A. Lagendijk, “Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects,” Phys. Rev. Lett. 81, 1381–1384 (1998).
[CrossRef]

Lagoudakis, P.

P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
[CrossRef]

Lagoudakis, P. G.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Lee, J.

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).
[CrossRef]

Leistikow, M. D.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

Lingley, Z.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

Litinskaya, M.

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

Lodahl, P.

P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013).
[CrossRef]

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Lu, S.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

S. Lu and A. Madhukar, “Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels,” Nano Lett. 7, 3443–3451 (2007).
[CrossRef]

Luan, L.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

Madhukar, A.

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

S. Lu and A. Madhukar, “Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels,” Nano Lett. 7, 3443–3451 (2007).
[CrossRef]

Malko, A. V.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013).
[CrossRef]

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

Meijerink, A.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

Milonni, P. W.

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef]

Mortensen, J. E.

P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013).
[CrossRef]

Mosk, A. P.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

Nguyen, H. M.

H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013).
[CrossRef]

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Nijem, N.

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Nimmo, M.

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

Nimmo, M. T.

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Park, Y.-S.

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

Peng, W.

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
[CrossRef]

Rupich, S. M.

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

Sampat, S.

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

Scheel, S.

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[CrossRef]

Seitz, O.

H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics,” J. Opt. Soc. Am. B 30, 2401–2408 (2013).
[CrossRef]

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Shevchenko, E. V.

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).
[CrossRef]

Sievert, P. R.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

Sommerfeld, A.

A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).

A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).

Sørensen, A. S.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Sra, A.

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Steckel, J.

D. V. Talapin and J. Steckel, “Quantum dot lightemitting devices,” MRS Bulletin 38, 685–691 (2013).
[CrossRef]

Stobbe, S.

P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013).
[CrossRef]

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Talapin, D. V.

D. V. Talapin and J. Steckel, “Quantum dot lightemitting devices,” MRS Bulletin 38, 685–691 (2013).
[CrossRef]

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).
[CrossRef]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Thränhardt, A.

A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002).
[CrossRef]

Vela, J.

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Vos, W. L.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

Waldeck, D. H.

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Welsch, D. G.

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[CrossRef]

Werder, D. J.

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

Wuister, S. F.

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

Yeganegi, E.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

ACS Nano (2)

H. M. Nguyen, O. Seitz, W. Peng, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes,” ACS Nano 6, 5574–5582 (2012).
[CrossRef]

M. Nimmo, L. Caillard, W. DeBenedetti, H. M. Nguyen, O. Seitz, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Visible to near infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics,” ACS Nano 7, 3236–3245 (2013).
[CrossRef]

Adv. Opt. Photon. (1)

Ann. Phys. Lpz. (1)

A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys. Lpz. 81, 1135–1153 (1926).

Appl. Phys. Lett. (2)

O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett. 100, 021902 (2012).
[CrossRef]

H. M. Nguyen, O. Seitz, D. Aureau, A. Sra, N. Nijem, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Spectroscopic evidence for nonradiative energy transfer between colloidal CdSe/ZnS nanocrystals and functionalized silicon substrates,” Appl. Phys. Lett. 98, 161904 (2011).
[CrossRef]

Chem. Rev. (2)

D. V. Talapin, J. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110, 389–458 (2010).
[CrossRef]

V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, “Hybrid resonant organic-inorganic nanostructures for optoelectronic applications,” Chem. Rev. 111, 5179–5214 (2011).
[CrossRef]

J. Am. Chem. Soc (1)

Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, and J. A. Hollingsworth, “‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking,” J. Am. Chem. Soc 130, 5026–5027 (2008).
[CrossRef]

J. Chem. Phys. (1)

S. F. Wuister, C. de Mello Donegá, and A. Meijerink, “Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef]

J. Lumin. (2)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[CrossRef]

D. L. Dexter, “Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells,” J. Lumin. 18/19, 779–784 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

J. M. Gordon and Y. N. Gartstein, “Dielectric polarization, anisotropy and nonradiative energy transfer into nanometer-scale thin semiconducting films,” J. Phys. Condens. Matter 25, 425302 (2013).
[CrossRef]

MRS Bulletin (1)

D. V. Talapin and J. Steckel, “Quantum dot lightemitting devices,” MRS Bulletin 38, 685–691 (2013).
[CrossRef]

Nano Lett. (4)

S. Lu and A. Madhukar, “Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels,” Nano Lett. 7, 3443–3451 (2007).
[CrossRef]

S. Lu, Z. Lingley, T. Asano, D. Harris, T. Barwicz, S. Guha, and A. Madhukar, “Photocurrent induced by nonradiative energy transfer from nanocrystal quantum dots to adjacent silicon nanowire conducting channels: toward a new solar cell paradigm,” Nano Lett. 9, 4548–4552 (2009).
[CrossRef]

H. Htoon, A. V. Malko, D. Bussian, J. Vela, J. A. Hollingsworth, Y. Chen, and V. I. Klimov, “Highly emissive multiexcitons in steady-state photoluminescence of individual giant CdSe/CdS core/shell nanocrystals,” Nano Lett. 10, 2401–2407 (2010).
[CrossRef]

A. V. Malko, Y.-S. Park, S. Sampat, J. Vela, Y. Chen, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Pump-intensity- and shell-thickness-dependent evolution of photoluminescence blinking in individual core/shell CdSe/CdS nanocrystals,” Nano Lett. 11, 5213–5218 (2011).
[CrossRef]

Nat. Phys. (1)

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

New J. Phys. (1)

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37–38 (1946).
[CrossRef]

Phys. Rev. A (4)

S. Scheel, L. Knöll, and D. G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[CrossRef]

C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008).
[CrossRef]

M. E. Crenshaw, “Comparison of quantum and classical local field effects on two-level atoms in a dielectric,” Phys. Rev. A 78, 053827 (2008).
[CrossRef]

M. Donaire, “Electromagnetic vacuum of complex media: dipole emission versus light propagation, vacuum energy, and local field factors,” Phys. Rev. A 83, 022502 (2011).
[CrossRef]

Phys. Rev. B (7)

A. Thränhardt, C. Ell, G. Khitrova, and H. M. Gibbs, “Relation between dipole moment and radiative lifetime in interface fluctuation qunatum dots,” Phys. Rev. B 65, 035327 (2002).
[CrossRef]

S. V. Goupalov, “Light scattering on exciton resonance in a semiconductor quantum dot: exact solution,” Phys. Rev. B 68, 125311 (2003).
[CrossRef]

P. T. Kristensen, J. E. Mortensen, P. Lodahl, and S. Stobbe, “Shell theorem for spontaneous emission,” Phys. Rev. B 88, 205308 (2013).
[CrossRef]

K. J. Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[CrossRef]

Y. N. Gartstein and V. M. Agranovich, “Excitons in long molecular chains near the reflecting interface,” Phys. Rev. B 76, 115329 (2007).
[CrossRef]

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69, 205414 (2004).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0  eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Phys. Rev. Lett. (4)

P. de Vries and A. Lagendijk, “Resonant scattering and spontaneous emission in dielectrics: microscopic derivation of local-field effects,” Phys. Rev. Lett. 81, 1381–1384 (1998).
[CrossRef]

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef]

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[CrossRef]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102, 077402 (2009).
[CrossRef]

Proc. SPIE (1)

P. Andreakou, M. Brossard, M. Bernechea, G. Konstantatos, and P. Lagoudakis, “Resonance energy transfer from PbS colloidal quantum dots to bulk silicon: the road to hybrid photovoltaics,” Proc. SPIE 8256, 82561L (2012).
[CrossRef]

Surf. Sci. (1)

D. H. Waldeck, A. P. Alivisatos, and C. B. Harris, “Nonradiative damping of molecular electronic excited states by metal surfaces,” Surf. Sci. 158, 103–125 (1985).
[CrossRef]

Other (11)

H. Fröhlich, Theory of Dielectrics (Clarendon, 1949).

C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, 1973).

V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Elsevier, 1982).

A. Sommerfeld, Partial Differential Equations in Physics (Academic, 1964).

W. J. I. D. Benedetti, M. T. Nimmo, S. M. Rupich, L. M. Caillard, Y. N. Gartstein, Y. J. Chabal, and A. V. Malko, “Efficient directed energy transfer through size-gradient nanocrystal layers into silicon substrates,” Adv. Funct. Mater., doi: 10.1002/adfm.201400667 (2014).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, S. A. Rice and I. Prigogine, eds. (Wiley, 1978), Vol. 37, pp. 1–65.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Expression (2) refers to the radiative decay rate. If the embedding medium is dissipative, the decay rate can increase substantially due to the absorption in the medium, particularly due to nonradiative energy transfer, and becomes sensitively dependent on radius a of the spherical cavity [28,50]. For small cavities, the NRET contribution that scales ∝1/a3 can dominate. In the weakly absorbing dielectric, εm′′≪εm′, the NRET contribution corresponds to the absorption due to the electrostatic-like field produced by the effective dipole (3), where one could approximately use just the real part, εm′, of the dielectric constant.

http://www.comsol.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of a spherical QD of radius a, with the center at position h from the planar interface between two semispaces of different dielectric constants, ε1 and ε2. The QD emitter is represented by the (oscillating) point dipole p0, embedded at the center of a dielectric sphere of dielectric constant ε. In this example, the dipole is oriented perpendicular to the interface. In the expanded view on the right we show an instance of the extra polarization pattern, Pextra, developed in the QD in the immediate proximity to the interface (see text for details).

Fig. 2.
Fig. 2.

Radiative emission rates as a function of position h of the emitter with respect to the interface that corresponds to h=0. Panels (a) and (b) show the benchmark variation of the rates in the absence of spatially variable local field effects for two different orientations of the dipole transition moment. The vertical dashed lines define the spatial range of the emitter positions that is displayed in panels (c) and (d), for λ0=600nm. The colored lines in panels (c) and (d) show the actual computational results, Γ and Γ, for QDs of different radii a (as indicated) in terms of the emission rate, Γ1(p1) in Eq. (2), in the bulk of the semispace with dielectric constant ε1. The black solid lines show the rates that would be in place for the two fixed effective dipole moments p1 and p2 [Eq. (3)], respectively, in the upper and lower semispaces (these correspond to local field effects as they occur far away from the interface).

Fig. 3.
Fig. 3.

Emission rates as a function of the QD emitter position ha in the upper semispace with ε1=1 for QDs of different radii a as indicated by coordinated colored lines. The left column, panels (a) and (c), is for a nondissipative substrate with ε2=16. The data in the right column, panels (b) and (d), is for a dissipative substrate with ε2=16+i0.3. Panels (a) and (b): the colored solid lines show the actual computation results for the model QD emitters with the transition moment perpendicular to the interface in terms of the bulk rate Γ1(p1). The solid black lines depict the benchmark results calculated for the fixed bulk value of the effective transition dipole p1 (“bare dipole”). The black dashed lines are the results that are obtained from benchmarks while taking into account the effect of the extra polarization of the QD body by the substrate in the electric dipole approximation, as derived by using Eq. (6) (short-dashed lines) and by numerically calculating the effective dipole p (long-dashed lines), see text. Panels (c) and (d) are the ratios of the actual results for model QD emitters and the results obtained for the bare dipoles. The solid colored lines are for the transitions perpendicular to the interface, and the dashed colored lines for the averages over random transition orientations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ0(p0)=ω3|p0|23πε0c3,
Γm(pm)=εmΓ0(pm),
pm=3εm2εm+εp0.
ImE0=ω36πε0c3p0.
ΓΓ0=ImEImE0.
pe=ε1(εε1)ε+2ε1a3Ee.
Ee=2αε1(2h)3ε2ε1ε2+ε1p,
p(h)=p1[1α4εε1ε+2ε1ε2ε1ε2+ε1(ah)3]1.

Metrics