Abstract

An elliptic cylindrical omnidirectional light absorber forming a pseudo-optical black hole is studied both analytically and numerically. The conditions for permittivity tensors to trap optical rays are obtained from semiclassical analysis of the ray optic Hamiltonian. The dispersive finite-difference time-domain method is used to study the performance of these light-absorbing structures numerically. It is found that the permittivity of the structure in the form (1/sinhuu)(a/r)n traps the light ray efficiently into the elliptic absorber for n2, where u is the radial elliptic coordinate and a is the focal distance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription