Abstract

Random lasing (RL) characteristics through different combinations of single-mode fiber (SMF) and dispersion compensated fiber (DCF) with a Raman pump (i.e., DCF is mounted at the front or at the end of the SMF; the length of the SMF and DCF is also changeable) are studied in this paper. The results indicate that the position and length ratio of DCF and SMF influence the output of the random distributed feedback fiber laser (RDF-FL) greatly (e.g., lasing threshold, spectrum stability, and shape). When the DCF is located at a position where higher laser power is distributed, RL can be enhanced remarkably. In addition, second-order RDF-FL is realized in an SMF/DCF mixed cavity pumped bidirectionally from the fiber center, indicating that the pump method is also an important factor that influences the performance of the RDF-FL. These results are useful for revealing the role of DCF in RL and light amplification, and also for providing theoretical support for flexible design and optimization of the RDF-FL.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
    [CrossRef]
  2. S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
    [CrossRef]
  3. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
    [CrossRef]
  4. M. Pang, X. Y. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38, 1866–1868 (2013).
    [CrossRef]
  5. T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
    [CrossRef]
  6. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
    [CrossRef]
  7. S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
    [CrossRef]
  8. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
    [CrossRef]
  9. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
    [CrossRef]
  10. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29, 1482–1488 (2011).
    [CrossRef]
  11. Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
    [CrossRef]
  12. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
    [CrossRef]
  13. A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19, 11906–11915 (2011).
    [CrossRef]
  14. Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens. 2, 97–117 (2012).
  15. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
    [CrossRef]
  16. S. Sugavanam, Z. Yan, V. Kamynin, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
    [CrossRef]
  17. H. Ahmad, M. Z. Zulkifli, M. H. Jemangin, and S. W. Harun, “Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
    [CrossRef]
  18. A. R. Sarmani, M. H. A. Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011).
    [CrossRef]
  19. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
    [CrossRef]
  20. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
    [CrossRef]
  21. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
    [CrossRef]
  22. M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38, 1542–1544 (2013).
    [CrossRef]
  23. Y. Y. Zhu, W. L. Zhang, Y. J. Rao, Z. N. Wang, and X. H. Jia, “Output characterization of random fiber laser formed by dispersion compensated fiber,” IEEE Photon. Technol. Lett. 26, 246–248 (2014).
    [CrossRef]
  24. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
    [CrossRef]

2014

Y. Y. Zhu, W. L. Zhang, Y. J. Rao, Z. N. Wang, and X. H. Jia, “Output characterization of random fiber laser formed by dispersion compensated fiber,” IEEE Photon. Technol. Lett. 26, 246–248 (2014).
[CrossRef]

S. Sugavanam, Z. Yan, V. Kamynin, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
[CrossRef]

2013

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[CrossRef]

M. Bravo, M. Fernandez-Vallejo, and M. Lopez-Amo, “Internal modulation of a random fiber laser,” Opt. Lett. 38, 1542–1544 (2013).
[CrossRef]

M. Pang, X. Y. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38, 1866–1868 (2013).
[CrossRef]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[CrossRef]

S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
[CrossRef]

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[CrossRef]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[CrossRef]

H. Ahmad, M. Z. Zulkifli, M. H. Jemangin, and S. W. Harun, “Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[CrossRef]

2012

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens. 2, 97–117 (2012).

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[CrossRef]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
[CrossRef]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[CrossRef]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
[CrossRef]

2011

2010

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

Adikan, F. R. M.

Ahmad, H.

H. Ahmad, M. Z. Zulkifli, M. H. Jemangin, and S. W. Harun, “Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[CrossRef]

Alcon-Camas, M.

Ania-Castañón, J. D.

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

Babin, S. A.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
[CrossRef]

Bakar, A. A. A.

Bakar, M. H. A.

Bao, X.

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[CrossRef]

Bao, X. Y.

Bravo, M.

Chen, L.

M. Pang, X. Y. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett. 38, 1866–1868 (2013).
[CrossRef]

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[CrossRef]

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Churkin, D. V.

S. Sugavanam, Z. Yan, V. Kamynin, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
[CrossRef]

S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
[CrossRef]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[CrossRef]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
[CrossRef]

El-Taher, A. E.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Fernandez-Vallejo, M.

Frazão, O.

Fu, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Harper, P.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

Harun, S. W.

H. Ahmad, M. Z. Zulkifli, M. H. Jemangin, and S. W. Harun, “Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[CrossRef]

Hu, Z.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Jemangin, M. H.

H. Ahmad, M. Z. Zulkifli, M. H. Jemangin, and S. W. Harun, “Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[CrossRef]

Jia, X. H.

Jiang, Y.

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[CrossRef]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[CrossRef]

Kablukov, S. I.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Kamynin, V.

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

Kobelke, J.

Li, P. Y.

Li, W.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[CrossRef]

Lopez-Amo, M.

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Mahdi, M. A.

Miao, B.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Ming, H.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Nikulin, M.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
[CrossRef]

Nuño, J.

Pan, W.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[CrossRef]

Pang, M.

Pinto, A. M. R.

Podivilov, E. V.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

Podivilovb, E. V.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
[CrossRef]

Rao, Y. J.

Santos, J. L.

Sarmani, A. R.

Schuster, K.

Shu, X.

Smirnov, S. V.

Sugavanam, S.

Tarasov, N.

Turitsyn, S. K.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36, 130–132 (2011).
[CrossRef]

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
[CrossRef]

Vatnik, I. D.

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
[CrossRef]

Wang, P.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Wang, Z. N.

Wu, H.

Yan, L.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[CrossRef]

Yan, Z.

Yang, Z. X.

Yao, J.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[CrossRef]

Zhang, D.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Zhang, L.

Zhang, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Zhang, W. L.

Zhu, J. M.

Zhu, T.

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[CrossRef]

Zhu, Y. Y.

Y. Y. Zhu, W. L. Zhang, Y. J. Rao, Z. N. Wang, and X. H. Jia, “Output characterization of random fiber laser formed by dispersion compensated fiber,” IEEE Photon. Technol. Lett. 26, 246–248 (2014).
[CrossRef]

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[CrossRef]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[CrossRef]

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Zou, X.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[CrossRef]

Zulkifli, M. Z.

H. Ahmad, M. Z. Zulkifli, M. H. Jemangin, and S. W. Harun, “Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Y. Zhu, W. L. Zhang, and Y. Jiang, “Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering,” IEEE Photon. Technol. Lett. 25, 1559–1561 (2013).
[CrossRef]

Y. Y. Zhu, W. L. Zhang, Y. J. Rao, Z. N. Wang, and X. H. Jia, “Output characterization of random fiber laser formed by dispersion compensated fiber,” IEEE Photon. Technol. Lett. 26, 246–248 (2014).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microwave Theory Tech. 61, 3470–3478 (2013).
[CrossRef]

J. Lightwave Technol.

Laser Phys. Lett.

H. Ahmad, M. Z. Zulkifli, M. H. Jemangin, and S. W. Harun, “Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band,” Laser Phys. Lett. 10, 055102 (2013).
[CrossRef]

Nat. Photonics

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fiber laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Opt. Commun.

T. Zhu, X. Bao, and L. Chen, “A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering,” Opt. Commun. 285, 1371–1374 (2012).
[CrossRef]

Opt. Express

A. R. Sarmani, M. H. A. Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19, 14152–14159 (2011).
[CrossRef]

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20, 14400–14405 (2012).
[CrossRef]

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20, 17695–17700 (2012).
[CrossRef]

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20, 27376–27381 (2012).
[CrossRef]

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21, 8544–8549 (2013).
[CrossRef]

A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19, 11906–11915 (2011).
[CrossRef]

S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express 21, 16466–16472 (2013).
[CrossRef]

S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express 21, 21236–21241 (2013).
[CrossRef]

S. Sugavanam, Z. Yan, V. Kamynin, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Opt. Express 22, 2839–2844 (2014).
[CrossRef]

Opt. Lett.

Photon. Sens.

Y. J. Rao, “OFS research over the last 10 years at CQU & UESTC,” Photon. Sens. 2, 97–117 (2012).

Phys. Rev. A

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84, 021805 (2011).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82, 033828 (2010).
[CrossRef]

Phys. Rev. Lett.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[CrossRef]

Other

S. K. Turitsyn, S. A. Babin, D. V. Churkin, I. D. Vatnik, M. Nikulin, and E. V. Podivilovb, “Random distributed feedback fibre lasers,” Phys. Rep., doi: 10.1016/j.physrep.2014.02.011 (2014) (published online).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the first experimental setup, taking regime I as an example, (b) schematic diagram of the second experimental setup pumped by a bidirectional pump. OSA, optical spectrum analyzer; WDM, wavelength division multiplexer; OPM, optical power meter; com, common port of WDM.

Fig. 2.
Fig. 2.

Output power of RL as a function of pump power. (a) 50 km SMF, (b) 9 km SMF.

Fig. 3.
Fig. 3.

Output spectra for different values of pump power Pp when the length of the SMF is 50 km.

Fig. 4.
Fig. 4.

Same plot as Fig. 3, except that the length of the SMF is 9 km.

Fig. 5.
Fig. 5.

Output power of RL as a function of pump power. (a) 50 km SMF, (b) 9 km SMF.

Fig. 6.
Fig. 6.

Output spectra for different values of pump power Pp when the length of the SMF is 50 km.

Fig. 7.
Fig. 7.

Output spectra for different values of pump power Pp when the length of the SMF is 9 km.

Fig. 8.
Fig. 8.

Output power of RL as a function of pump power.

Fig. 9.
Fig. 9.

Output specta of the RDF-FL for different values of pump power Pp. (a) First-order Stokes light, (b) second-order Stokes light.

Tables (3)

Tables Icon

Table 1. Description of the First Experimental Setup Studied with 1  km DCF

Tables Icon

Table 2. Description of the First Experimental Setup Studied with 10  km DCF

Tables Icon

Table 3. Description of the Second Experimental Setup

Metrics