M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).

[CrossRef]

G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in 10th Annual Meeting IEEE Conference Proceedings of the Lasers and Electro-Optics Society, LEOS ‘97 (IEEE, 1997), p. 165.

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 71–77 (2006).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).

[CrossRef]

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[CrossRef]

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photon. Rev. 4, 179–191 (2010).

[CrossRef]

D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective optimization in integrated photonics design,” Opt. Lett. 38, 2181–2184 (2013).

[CrossRef]

D. Gagnon, J. Dumont, and L. J. Dubé, “Beam shaping using genetically optimized two-dimensional photonic crystals,” J. Opt. Soc. Am. A 29, 2673–2678 (2012).

[CrossRef]

G. Painchaud-April, J. Dumont, D. Gagnon, and L. J. Dubé, “S and Q matrices reloaded: applications to open, inhomogeneous, and complex cavities,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–4.

D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective optimization in integrated photonics design,” Opt. Lett. 38, 2181–2184 (2013).

[CrossRef]

D. Gagnon, J. Dumont, and L. J. Dubé, “Beam shaping using genetically optimized two-dimensional photonic crystals,” J. Opt. Soc. Am. A 29, 2673–2678 (2012).

[CrossRef]

G. Painchaud-April, J. Dumont, D. Gagnon, and L. J. Dubé, “S and Q matrices reloaded: applications to open, inhomogeneous, and complex cavities,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–4.

A. Z. Elsherbeni and A. A. Kishk, “Modeling of cylindrical objects by circular dielectric and conducting cylinders,” IEEE Trans. Antennas Propag. 40, 96–99 (1992).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective optimization in integrated photonics design,” Opt. Lett. 38, 2181–2184 (2013).

[CrossRef]

D. Gagnon, J. Dumont, and L. J. Dubé, “Beam shaping using genetically optimized two-dimensional photonic crystals,” J. Opt. Soc. Am. A 29, 2673–2678 (2012).

[CrossRef]

G. Painchaud-April, J. Dumont, D. Gagnon, and L. J. Dubé, “S and Q matrices reloaded: applications to open, inhomogeneous, and complex cavities,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–4.

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).

[CrossRef]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895–16902 (2008).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

L. Ge, “Steady-state ab initio laser theory and its applications in random and complex media,” Ph.D. dissertation (Yale University, 2010).

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in 10th Annual Meeting IEEE Conference Proceedings of the Lasers and Electro-Optics Society, LEOS ‘97 (IEEE, 1997), p. 165.

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011).

[CrossRef]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[CrossRef]

W. D. Heiss, “The physics of exceptional points,” J. Phys. A 45, 444016 (2012).

[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[CrossRef]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[CrossRef]

A. Imamoglu, Quantum Computation Using Quantum Dot Spins and Microcavities (Wiley, 2005), Chap. 14, pp. 217–227.

S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 71–77 (2006).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission,” Phys. Rev. A 79, 053858 (2009).

[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[CrossRef]

A. Z. Elsherbeni and A. A. Kishk, “Modeling of cylindrical objects by circular dielectric and conducting cylinders,” IEEE Trans. Antennas Propag. 40, 96–99 (1992).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission,” Phys. Rev. A 79, 053858 (2009).

[CrossRef]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

D. M. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich, “Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires,” Plasmonics 9, 389–407 (2014).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 71–77 (2006).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

D. M. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich, “Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires,” Plasmonics 9, 389–407 (2014).

[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

S. Nojima, “Theoretical analysis of feedback mechanisms of two-dimensional finite-sized photonic-crystal lasers,” J. Appl. Phys. 98, 043102 (2005).

[CrossRef]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

D. M. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich, “Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires,” Plasmonics 9, 389–407 (2014).

[CrossRef]

E. I. Smotrova and A. I. Nosich, “Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes,” Opt. Lett. 38, 2059–2061 (2013).

[CrossRef]

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).

[CrossRef]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

G. Painchaud-April, J. Dumont, D. Gagnon, and L. J. Dubé, “S and Q matrices reloaded: applications to open, inhomogeneous, and complex cavities,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–4.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

S. M. Raeis-Zadeh and S. Safavi-Naeini, “Multipole-based modal analysis of gate-defined quantum dots in graphene,” Eur. Phys. J. B 86, 1–7 (2013).

[CrossRef]

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photon. Rev. 4, 179–191 (2010).

[CrossRef]

P. Ramachandran and G. Varoquaux, “Mayavi: 3D visualization of scientific data,” Comput. Sci. Eng. 13, 40–51 (2011).

[CrossRef]

Rayleigh, “On the electromagnetic theory of light,” Philos. Mag. 12(73) 81–101 (1881).

[CrossRef]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission,” Phys. Rev. A 79, 053858 (2009).

[CrossRef]

S. M. Raeis-Zadeh and S. Safavi-Naeini, “Multipole-based modal analysis of gate-defined quantum dots in graphene,” Eur. Phys. J. B 86, 1–7 (2013).

[CrossRef]

C. Sanderson, “Armadillo: an open source C++ linear algebra library for fast prototyping and computationally intensive experiments,” Technical Report (NICTA, 2010).

D. M. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich, “Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires,” Plasmonics 9, 389–407 (2014).

[CrossRef]

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).

[CrossRef]

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011).

[CrossRef]

A. E. Siegman, Lasers (University Science Books, 1986).

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

E. I. Smotrova and A. I. Nosich, “Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes,” Opt. Lett. 38, 2059–2061 (2013).

[CrossRef]

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).

[CrossRef]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).

[CrossRef]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895–16902 (2008).

[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[CrossRef]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895–16902 (2008).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

P. Ramachandran and G. Varoquaux, “Mayavi: 3D visualization of scientific data,” Comput. Sci. Eng. 13, 40–51 (2011).

[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).

[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[CrossRef]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011).

[CrossRef]

A. Nakagawa, S. Ishii, and T. Baba, “Photonic molecule laser composed of GaInAsP microdisks,” Appl. Phys. Lett. 86, 041112 (2005).

[CrossRef]

P. Ramachandran and G. Varoquaux, “Mayavi: 3D visualization of scientific data,” Comput. Sci. Eng. 13, 40–51 (2011).

[CrossRef]

S. M. Raeis-Zadeh and S. Safavi-Naeini, “Multipole-based modal analysis of gate-defined quantum dots in graphene,” Eur. Phys. J. B 86, 1–7 (2013).

[CrossRef]

E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

[CrossRef]

S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 71–77 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).

[CrossRef]

A. Z. Elsherbeni and A. A. Kishk, “Modeling of cylindrical objects by circular dielectric and conducting cylinders,” IEEE Trans. Antennas Propag. 40, 96–99 (1992).

[CrossRef]

S. Nojima, “Theoretical analysis of feedback mechanisms of two-dimensional finite-sized photonic-crystal lasers,” J. Appl. Phys. 98, 043102 (2005).

[CrossRef]

W. D. Heiss, “The physics of exceptional points,” J. Phys. A 45, 444016 (2012).

[CrossRef]

Y. P. Rakovich and J. F. Donegan, “Photonic atoms and molecules,” Laser Photon. Rev. 4, 179–191 (2010).

[CrossRef]

T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–271 (2011).

[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).

[CrossRef]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

[CrossRef]

C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007).

[CrossRef]

L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895–16902 (2008).

[CrossRef]

H. G. Schwefel and C. G. Poulton, “An improved method for calculating resonances of multiple dielectric disks arbitrarily positioned in the plane,” Opt. Express 17, 13178–13186 (2009).

[CrossRef]

J.-B. Shim and J. Wiersig, “Semiclassical evaluation of frequency splittings in coupled optical microdisks,” Opt. Express 21, 24240–24253 (2013).

[CrossRef]

M. Geissbuehler and T. Lasser, “How to display data by color schemes compatible with red-green color perception deficiencies,” Opt. Express 21, 9862–9874 (2013).

[CrossRef]

E. I. Smotrova and A. I. Nosich, “Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes,” Opt. Lett. 38, 2059–2061 (2013).

[CrossRef]

D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective optimization in integrated photonics design,” Opt. Lett. 38, 2181–2184 (2013).

[CrossRef]

C. Wang and C. P. Search, “Nonlinearly enhanced refractive index sensing in coupled optical microresonators,” Opt. Lett. 39, 26–29 (2014).

[CrossRef]

Rayleigh, “On the electromagnetic theory of light,” Philos. Mag. 12(73) 81–101 (1881).

[CrossRef]

J. W. Ryu, S. Y. Lee, and S. W. Kim, “Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission,” Phys. Rev. A 79, 053858 (2009).

[CrossRef]

L. Ge, Y. D. Chong, and A. D. Stone, “Steady-state ab initio laser theory: generalizations and analytic results,” Phys. Rev. A 82, 063824 (2010).

[CrossRef]

S. Sunada, T. Harayama, and K. S. Ikeda, “Multimode lasing in two-dimensional fully chaotic cavity lasers,” Phys. Rev. E 71, 046209 (2005).

[CrossRef]

M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, “Pump-induced exceptional points in lasers,” Phys. Rev. Lett. 108, 173901 (2012).

[CrossRef]

D. M. Natarov, R. Sauleau, M. Marciniak, and A. I. Nosich, “Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires,” Plasmonics 9, 389–407 (2014).

[CrossRef]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556–1564 (1998).

[CrossRef]

A. Imamoglu, Quantum Computation Using Quantum Dot Spins and Microcavities (Wiley, 2005), Chap. 14, pp. 217–227.

S. V. Boriskina, Photonic Molecules and Spectral Engineering, Vol. 156 of Springer Series in Optical Sciences (Springer, 2010), Chap. 16, pp. 393–421.

G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in 10th Annual Meeting IEEE Conference Proceedings of the Lasers and Electro-Optics Society, LEOS ‘97 (IEEE, 1997), p. 165.

L. Ge, “Steady-state ab initio laser theory and its applications in random and complex media,” Ph.D. dissertation (Yale University, 2010).

Since ω=ck, we will refer generically to both quantities as eigenfrequencies.

A. E. Siegman, Lasers (University Science Books, 1986).

A further technical aspect of the implementation should be noted. Although we have not encountered any instabilities in our calculations, it should be acknowledged that for high accuracy work, Eqs. (12) and (13) are not well suited (exponential decay or growth of Tll′nn′ with the indices l and l′). This difficulty has been recognized before [17] and solved generally in [36].

G. Painchaud-April, J. Dumont, D. Gagnon, and L. J. Dubé, “S and Q matrices reloaded: applications to open, inhomogeneous, and complex cavities,” in 15th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2013), pp. 1–4.

S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “A scalable numerical approach for the Steady-State Ab-Initio Laser Theory,” arXiv:1312.2488 (2013).

C. Sanderson, “Armadillo: an open source C++ linear algebra library for fast prototyping and computationally intensive experiments,” Technical Report (NICTA, 2010).

We use the denomination GLMT in accordance with [29] to mean “theories dealing with the interaction between electromagnetic arbitrary shaped beams and a regular particle, allowing one to solve the problem by using the method of separation of variables.” However, as a matter of historical precision, it could be argued that a theory, dealing specifically with the scattering by many cylinders, should be called “generalized Rayleigh theory” in honor of the first calculation of scattering by one single cylinder by Rayleigh [45].

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970).