Abstract

The reflectivity of ultrasharp periodic groove arrays in a gold surface is studied for a general direction of light incidence. This includes the case of incident light propagating along the grooves. Two efficient numerical modeling approaches are presented, namely, a simple and approximate stack matrix method (SMM), which uses the mode index of gap-plasmon polaritons as an effective index, and a rigorous Green’s function surface integral equation method (GFSIEM). The results of the highly simple SMM show remarkable similarity to the exact results obtained with the rigorous GFSIEM, which reinforces the idea that the physics of light absorption in such structures is dominated by the coupling of light into plasmons.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
    [CrossRef]
  2. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010).
    [CrossRef]
  3. A. H. Pfund, “The optical properties of metallic and crystalline powders,” J. Opt. Soc. Am. 23, 375–377 (1933).
    [CrossRef]
  4. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
    [CrossRef]
  5. M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
    [CrossRef]
  6. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
    [CrossRef]
  7. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [CrossRef]
  8. T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).
    [CrossRef]
  9. E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
    [CrossRef]
  10. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  11. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  12. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [CrossRef]
  13. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
    [CrossRef]
  14. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
    [CrossRef]
  15. Y. Bao, Y. Hou, and Z. Wang, “Robust existence of the broadband optical transmission effect in multiple-layer gratings,” J. Opt. Soc. Am. B 31, 255–258 (2014).
    [CrossRef]
  16. W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments,” Phys. Rev. B 88, 155414 (2013).
    [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  18. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).
    [CrossRef]
  19. D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).
    [CrossRef]
  20. J. Liu, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory,” J. Opt. Soc. Am. A 18, 526–536 (2001).
    [CrossRef]
  21. J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
    [CrossRef]
  22. M. K. Choi, “Numerical calculation of light scattering from a layered sphere by the boundary-element method,” J. Opt. Soc. Am. A 18, 577–583 (2001).
    [CrossRef]
  23. N. Zavareian and R. Massudi, “Controllable trapping of nanowires using a symmetric slot waveguide,” J. Phys. Chem. C 117, 17159–17166 (2013).
    [CrossRef]
  24. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
    [CrossRef]
  25. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
    [CrossRef]
  26. F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).
  27. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef]
  28. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
    [CrossRef]
  29. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
    [CrossRef]
  30. S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A 23, 1757–1767 (2006).
    [CrossRef]
  31. F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theor. Tech. 58, 105–115 (2010).
    [CrossRef]
  32. A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
    [CrossRef]
  33. H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett. 100, 241104 (2012).
    [CrossRef]
  34. J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
    [CrossRef]
  35. M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
    [CrossRef]
  36. M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, 1986), Chap. 5.4A.
  37. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
    [CrossRef]
  38. T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).
    [CrossRef]
  39. T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18, 26245–26258 (2010).
    [CrossRef]
  40. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012).
    [CrossRef]
  41. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995), Chap. 8.
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2014 (2)

M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
[CrossRef]

Y. Bao, Y. Hou, and Z. Wang, “Robust existence of the broadband optical transmission effect in multiple-layer gratings,” J. Opt. Soc. Am. B 31, 255–258 (2014).
[CrossRef]

2013 (6)

N. Zavareian and R. Massudi, “Controllable trapping of nanowires using a symmetric slot waveguide,” J. Phys. Chem. C 117, 17159–17166 (2013).
[CrossRef]

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).
[CrossRef]

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments,” Phys. Rev. B 88, 155414 (2013).
[CrossRef]

2012 (4)

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett. 100, 241104 (2012).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012).
[CrossRef]

2011 (2)

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

2010 (4)

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theor. Tech. 58, 105–115 (2010).
[CrossRef]

T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18, 26245–26258 (2010).
[CrossRef]

2008 (3)

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef]

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[CrossRef]

2007 (2)

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).
[CrossRef]

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

2006 (3)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A 23, 1757–1767 (2006).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

2005 (3)

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
[CrossRef]

2002 (2)

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

2001 (2)

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1933 (1)

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Akozbek, N.

M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
[CrossRef]

Alù, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[CrossRef]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[CrossRef]

Bao, Y.

Bardou, N.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Bauer, M.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

Beermann, J.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012).
[CrossRef]

Behymer, E. M.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Berini, P.

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A 23, 1757–1767 (2006).
[CrossRef]

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
[CrossRef]

Bloemer, M. J.

M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
[CrossRef]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Bond, T. C.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Bora, M.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Bozhevolnyi, S. I.

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).
[CrossRef]

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef]

Britten, J. A.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Catrysse, P. B.

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Chang, A. S. P.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Charbonneau, R.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
[CrossRef]

Chen, H.

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995), Chap. 8.

Choi, M. K.

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Christ, A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Collin, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Collins, J. P.

D’Aguanno, G.

M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
[CrossRef]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[CrossRef]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Dehlinger, D. A.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Devaux, E.

Dong, B.-Z.

Ebbesen, T. W.

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Eriksen, R. L.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

Fan, S.

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Furtak, T. E.

M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, 1986), Chap. 5.4A.

Gadegaard, J.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Gaylord, T. K.

Giessen, H.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

Gippius, N. A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

Grann, E. B.

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010).
[CrossRef]

Gu, B.-Y.

Guo, C.

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[CrossRef]

Haïdar, R.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Holmgaard, T.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

Hou, Y.

Huang, H.

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Jensen, T. K.

Jette-Charbonneau, S.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
[CrossRef]

Jetté-Charbonneau, S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Jung, J.

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef]

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Klein, M. V.

M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, 1986), Chap. 5.4A.

Kong, F.

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

Kong, J. A.

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

Kravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010).
[CrossRef]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010).
[CrossRef]

Kristensen, P. K.

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Lahoud, N.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
[CrossRef]

Larson, C. C.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[CrossRef]

Leißner, T.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

Lemke, C.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

Li, K.

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

Liu, J.

Maes, B.

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett. 100, 241104 (2012).
[CrossRef]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Mait, J. N.

Martin, O. J. F.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Massudi, R.

N. Zavareian and R. Massudi, “Controllable trapping of nanowires using a symmetric slot waveguide,” J. Phys. Chem. C 117, 17159–17166 (2013).
[CrossRef]

Mattiucci, N.

M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
[CrossRef]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[CrossRef]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

Mattiussi, G. A.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
[CrossRef]

Medina, F.

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theor. Tech. 58, 105–115 (2010).
[CrossRef]

Mesa, F.

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theor. Tech. 58, 105–115 (2010).
[CrossRef]

Mirotznik, M. S.

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Moharam, M. G.

Mortensen, N. A.

W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments,” Phys. Rev. B 88, 155414 (2013).
[CrossRef]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

Munechika, K.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010).
[CrossRef]

Nguyen, H. T.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

Pedersen, K.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18, 26245–26258 (2010).
[CrossRef]

Pedersen, T. G.

Pelouard, J.-L.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Pfund, A. H.

Pommet, D. A.

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Prather, D. W.

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Shen, H.

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett. 100, 241104 (2012).
[CrossRef]

Shen, J.-T.

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

Skigin, D. C.

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theor. Tech. 58, 105–115 (2010).
[CrossRef]

Skovsen, E.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

Søndergaard, T.

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,” J. Opt. Soc. Am. B 29, 130–137 (2012).
[CrossRef]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

T. Søndergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, “Guidelines for 1D-periodic surface microstructures for antireflective lenses,” Opt. Express 18, 26245–26258 (2010).
[CrossRef]

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).
[CrossRef]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

Trimm, R.

M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
[CrossRef]

Vincent, G.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[CrossRef]

Wang, Z.

Wu, B.-I.

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Wubs, M.

W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments,” Phys. Rev. B 88, 155414 (2013).
[CrossRef]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Yan, W.

W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments,” Phys. Rev. B 88, 155414 (2013).
[CrossRef]

Yang, G.-Z.

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Zavareian, N.

N. Zavareian and R. Massudi, “Controllable trapping of nanowires using a symmetric slot waveguide,” J. Phys. Chem. C 117, 17159–17166 (2013).
[CrossRef]

Zentgraf, T.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

Adv. Mater. (1)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102, 251105 (2013).
[CrossRef]

E. Skovsen, T. Søndergaard, C. Lemke, T. Holmgaard, T. Leißner, R. L. Eriksen, J. Beermann, M. Bauer, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold based broadband polarizers for ultra-short laser pulses,” Appl. Phys. Lett. 103, 211102 (2013).
[CrossRef]

H. Shen and B. Maes, “Enhanced optical transmission through tapered metallic gratings,” Appl. Phys. Lett. 100, 241104 (2012).
[CrossRef]

M. J. Bloemer, N. Mattiucci, G. D’Aguanno, R. Trimm, and N. Akozbek, “Resonant and nonresonant funneling through plasmonic gratings in the limit of the aperture width approaching zero,” Appl. Phys. Lett. 104, 021103 (2014).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41, 1480–1491 (2005).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microwave Theor. Tech. 58, 105–115 (2010).
[CrossRef]

J. Appl. Phys. (2)

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104, 053516 (2008).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

N. Zavareian and R. Massudi, “Controllable trapping of nanowires using a symmetric slot waveguide,” J. Phys. Chem. C 117, 17159–17166 (2013).
[CrossRef]

Nat. Commun. (1)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[CrossRef]

Nat. Photonics (1)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[CrossRef]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef]

New J. Phys. (1)

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (7)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81, 165401 (2010).
[CrossRef]

W. Yan, N. A. Mortensen, and M. Wubs, “Green’s function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments,” Phys. Rev. B 88, 155414 (2013).
[CrossRef]

J. Jung and T. Søndergaard, “Green’s function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Phys. Rev. Lett. (5)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

J.-T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Phys. Status Solidi B (2)

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, O. J. F. Martin, J. Kuhl, and H. Giessen, “Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal,” Phys. Status Solidi B 243, 2344–2348 (2006).
[CrossRef]

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007).
[CrossRef]

Prog. Electromagn. Res. (1)

F. Kong, K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, “Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromagn. Res. 76, 449–466 (2007).

Other (2)

M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, 1986), Chap. 5.4A.

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Principle used to convert one period of the groove structure into a multilayer structure to be used in the SMM. The figure also shows the physical interpretation of light incidence under an angle in the xy plane used in the SMM.

Fig. 2.
Fig. 2.

Physical interpretation of light incidence under an angle in the yz plane used in the SMM. For simplicity, reflections at interfaces other than the last are omitted in the figure.

Fig. 3.
Fig. 3.

Surface of a scattering structure divided into surface elements. For the periodic scattering problem considered here, the figure represents a single period, Λ, of the structure.

Fig. 4.
Fig. 4.

Weight functions used in constructing linearly varying fields in each surface element.

Fig. 5.
Fig. 5.

GFSIEM and SMM results for the reflectance of the structure with a bottom width of 0.3 nm (Λ=250nm, h=500nm) under angles of incidence in the xy plane. The inset on the left-hand side of the bottom figure shows one period of the actual structure.

Fig. 6.
Fig. 6.

GFSIEM and SMM results for the reflectance of the structure with a bottom width of 0.3 nm (Λ=250nm, h=500nm) under angles of incidence in the yz plane. The inset on the left-hand side of the bottom figure shows one period of the actual structure.

Fig. 7.
Fig. 7.

GFSIEM and SMM results for the reflectance of the structure with a bottom width of 10 nm (Λ=250nm, h=500nm) under angles of incidence in the xy plane. The inset on the left-hand side of the bottom figure shows one period of the actual structure.

Fig. 8.
Fig. 8.

GFSIEM and SMM results for the reflectance of the structure with a bottom width of 10 nm (Λ=250nm, h=500nm) under angles of incidence in the yz plane. The inset on the left-hand side of the bottom figure shows one period of the actual structure.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

Hij=1τij[1ρijρij1],
Lj=[exp(iβjdj)00exp(iβjdj)],
H12L2HN2,N1LN1HN1,N=S1N=[S11S12S21S22],
[Eu1Ed1]=S1N[EuNEdN].
R=|Eu1Ed1|2=|S12S22|2.
H(x,y)=exp(ikG-SPPx)f(y),
[1exp(2iκyId)](κyI2εI2+κyM2εM2)2κyMκyIεMεI[1+exp(2iκyId)]=0,
ρ12=(n2/n1)cos(θ)1(n2/n1)cos(θ)+1,
τ12=1+ρ12.
E(r)=UE(ρ;kx,kz)eikxxeikzz,
H(r)=UH(ρ;kx,kz)eikxxeikzz,
Hs(ρ)=iks2[kzsHz+ωε0εz^×sEz],
Es(ρ)=iks2[kzsEzωμ0z^×sHz],
ks2=k02εkz2,
s=x^x+y^y.
2Ez+k02εEz=s2Ez+ks2Ez=0.
(s2+ksi2)gi(ρ;ρ)=δ(ρρ).
gi(r,r)=i4πnei(kxnG)(xx)eikyi,n|yy|kyi,nG.
Ez(ρ)={Ez0(ρ){g1(ρ;ρ)n^·Ez(ρ)Ez(ρ)n^·g1(ρ;ρ)}dlρΩ1{g2(ρ;ρ)n^·Ez(ρ)Ez(ρ)n^·g2(ρ;ρ)}dlρΩ2,
Hz(ρ)={Hz0(ρ){g1(ρ;ρ)n^·Hz(ρ)Hz(ρ)n^·g1(ρ;ρ)}dlρΩ1{g2(ρ;ρ)n^·Hz(ρ)Hz(ρ)n^·g2(ρ;ρ)}dlρΩ2.
Ez1=Ez2,
Hz1=Hz2,
n^·Hz2=n^·Hz1k02ε2kz2k02ε1kz2t^·Ez1kzk0ε0μ0k02(ε1ε2)k02ε1kz2,
n^·Ez2=n^·Ez1ε1ε2k02ε2kz2k02ε1kz2t^·Hz1kzk0μ0ε0k02(ε2ε1)k02ε1kz2.
Ez(s)=Ez(s(t))i=1NEz,i(s)N1(tti(s)Li)+Ez,i(e)N2(tti(s)Li),
t¯E=T¯¯E¯z(s),
E¯z(e)=D¯¯E¯z(s),
D¯¯=[010000010000001a0000].
[E¯z,0(s)0¯H¯z,0(s)0¯]=[B¯¯1A¯¯10¯¯0¯¯B¯¯2A¯¯2f1A¯¯2T¯¯f20¯¯0¯¯0¯¯B¯¯1A¯¯1A¯¯2T¯¯f40¯¯B¯¯2A¯¯2f3][E¯z(s)ϕ¯E(s)H¯z(s)ϕ¯H(s)],
f1=ε1ε2k02ε2kz2k02ε1kz2,
f2=kzk01ε2k02(ε2ε1)k02ε1kz2,
f3=k02ε2kz2k02ε1kz2,
f4=kzk0k02(ε1ε2)k02ε1kz2,
B¯¯1=(12I¯¯B¯¯(1,1)B¯¯(1,2)D¯¯),
A¯¯1=(A¯¯(1,1)+A¯¯(1,2)D¯¯),
B¯¯2=(12I¯¯+B¯¯(2,1)+B¯¯(2,2)D¯¯),
A¯¯2=(A¯¯(2,1)+A¯¯(2,2)D¯¯),
Ai,j(u,v)=Pgu(si,s(t))Nv(ttj(s)Lj)dt,
Bi,j(u,v)=P[n^·gu(si,r)]r=s(t)Nv(ttj(s)Lj)dt.

Metrics