Abstract

We present our investigations on the enhancement of magneto-optical (MO) effects in multilayer NiFe/Ag(Au,Cu) thin films. A strong enhancement of the polar MO activity is observed when surface plasmon polaritons (SPPs) are excited in the Kretschmann configuration. We show that the best optimization depends not only on the MO coefficients of ferromagnetic metal but also on the surface plasmon resonances of the chosen noble metal. We have experimentally determined both the real and the imaginary parts of the magnetic-field-induced modification of the SPP wave vector for NiFe/Ag(Au,Cu) magnetoplasmonic systems. We have analyzed the spectral dependencies of the polar Kerr effect in NiFe/Ag(Au,Cu) bilayer films and the modulation of the SPP wave vector, and we conclude that it is dominated by the evolution of the SPP properties with photon energy and not the MO parameter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
    [CrossRef]
  2. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
    [CrossRef]
  3. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic field modulation of intense surface plasmon polaritons,” Opt. Express 18, 7743–7752 (2010).
    [CrossRef]
  4. G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
    [CrossRef]
  5. V. G. Kravets, L. V. Poperenko, and B. M. Mironyuk, “Magneto-optical recording on the multilayers systems with plasmon excitation,” Opt. Commun. 282, 1099–1103 (2009).
    [CrossRef]
  6. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
    [CrossRef]
  7. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvesdin, “Giant magneto-optical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
    [CrossRef]
  8. Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, “Magneto-optical Kerr effect in corrugated magnetoplasmonic heterostructures,” J. Opt. Soc. Am. B 30, 2053–2058 (2013).
    [CrossRef]
  9. V. G. Kravets and A. S. Lapchuk, “Enhancement of magneto-optical effects in magnetic nanoparticles near gold-dielectric surfaces,” Appl. Opt. 49, 5013–5019 (2010).
    [CrossRef]
  10. W. Reim and J. Schones, Magneto Optical Spectroscopy, Ferromagnetic Materials (Elsevier Science, 1990), Vol. 5.
  11. B. Heinrich, “Ferromagnetic resonance in ultrathin film structures,” in Ultrathin Magnetic Structures, B. Heinrich and J. A. C. Bland, eds. (Springer-Verlag, 1994), pp. 195–222.
  12. A. K. Zvezdin and V. A. Kotov, Modern Magneto-optics and Magneto-optical Materials (IOP Publishing, 1997).
  13. C. C. Robinson, “Electromagnetic theory of the Kerr and the Faraday effects for oblique incidence,” J. Opt. Soc. Am. 54, 1220–1224 (1964).
    [CrossRef]
  14. G. S. Krinchik and V. A. Artemjev, “Magneto-optic properties of nickel, iron, and cobalt,” J. Appl. Phys. 39, 1276–1278 (1968).
    [CrossRef]
  15. D. Sangalli, A. Marini, and A. Debernardi, “Pseudopotential-based first-principles approach to the magneto-optical Kerr effects: from metals to the inclusion of local fields and excitonic effects,” Phys. Rev. B 86, 125139 (2012).
    [CrossRef]
  16. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
    [CrossRef]
  17. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1992).
  18. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschr. 23, 2135–2138 (1968).
  19. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  21. P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi A 210, 2445–2455 (2013).
    [CrossRef]
  22. F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
    [CrossRef]
  23. E. A. Stern, “Faraday effect in magnetized solids,” Phys. Rev. Lett. 15, 62–66 (1965).
    [CrossRef]
  24. I. Osterloh, P. M. Oppeneer, J. Sticht, and J. Kübler, “A theoretical study of the magneto-optical Kerr effect in FeX (X = Co, Ni, Pd, Pt),” J. Phys. Condens. Matter 6, 285–292 (1994).
    [CrossRef]
  25. V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
    [CrossRef]

2013

G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[CrossRef]

Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, “Magneto-optical Kerr effect in corrugated magnetoplasmonic heterostructures,” J. Opt. Soc. Am. B 30, 2053–2058 (2013).
[CrossRef]

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi A 210, 2445–2455 (2013).
[CrossRef]

2012

D. Sangalli, A. Marini, and A. Debernardi, “Pseudopotential-based first-principles approach to the magneto-optical Kerr effects: from metals to the inclusion of local fields and excitonic effects,” Phys. Rev. B 86, 125139 (2012).
[CrossRef]

2010

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

V. G. Kravets and A. S. Lapchuk, “Enhancement of magneto-optical effects in magnetic nanoparticles near gold-dielectric surfaces,” Appl. Opt. 49, 5013–5019 (2010).
[CrossRef]

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic field modulation of intense surface plasmon polaritons,” Opt. Express 18, 7743–7752 (2010).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

2009

V. G. Kravets, L. V. Poperenko, and B. M. Mironyuk, “Magneto-optical recording on the multilayers systems with plasmon excitation,” Opt. Commun. 282, 1099–1103 (2009).
[CrossRef]

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvesdin, “Giant magneto-optical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

2006

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

2001

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

1994

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

I. Osterloh, P. M. Oppeneer, J. Sticht, and J. Kübler, “A theoretical study of the magneto-optical Kerr effect in FeX (X = Co, Ni, Pd, Pt),” J. Phys. Condens. Matter 6, 285–292 (1994).
[CrossRef]

1976

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1968

G. S. Krinchik and V. A. Artemjev, “Magneto-optic properties of nickel, iron, and cobalt,” J. Appl. Phys. 39, 1276–1278 (1968).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschr. 23, 2135–2138 (1968).

1965

E. A. Stern, “Faraday effect in magnetized solids,” Phys. Rev. Lett. 15, 62–66 (1965).
[CrossRef]

1964

Abeles, F.

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

Armelles, G.

G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Artemjev, V. A.

G. S. Krinchik and V. A. Artemjev, “Magneto-optic properties of nickel, iron, and cobalt,” J. Appl. Phys. 39, 1276–1278 (1968).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1992).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1992).

Belotelov, V. I.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, V. A. Kotov, and A. K. Zvesdin, “Giant magneto-optical orientational effect in plasmonic heterostructures,” Opt. Lett. 34, 398–400 (2009).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

Bertrand, P.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Bykov, D. A.

Cebollada, A.

G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Clavero, C.

Debernardi, A.

D. Sangalli, A. Marini, and A. Debernardi, “Pseudopotential-based first-principles approach to the magneto-optical Kerr effects: from metals to the inclusion of local fields and excitonic effects,” Phys. Rev. B 86, 125139 (2012).
[CrossRef]

Demidenko, Y.

Doskolovich, L. L.

Ezhov, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Fedyanin, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Ganshina, E. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Garcia-Martin, A.

G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[CrossRef]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Garcia-Martin, J.-M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Gonzalez, M. U.

G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[CrossRef]

Grunin, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Heinrich, B.

B. Heinrich, “Ferromagnetic resonance in ultrathin film structures,” in Ultrathin Magnetic Structures, B. Heinrich and J. A. C. Bland, eds. (Springer-Verlag, 1994), pp. 195–222.

Hermann, C.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kalish, A. N.

Kosobukin, V. A.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

Kotov, V. A.

Kravets, V. G.

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi A 210, 2445–2455 (2013).
[CrossRef]

V. G. Kravets and A. S. Lapchuk, “Enhancement of magneto-optical effects in magnetic nanoparticles near gold-dielectric surfaces,” Appl. Opt. 49, 5013–5019 (2010).
[CrossRef]

V. G. Kravets, L. V. Poperenko, and B. M. Mironyuk, “Magneto-optical recording on the multilayers systems with plasmon excitation,” Opt. Commun. 282, 1099–1103 (2009).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschr. 23, 2135–2138 (1968).

Krinchik, G. S.

G. S. Krinchik and V. A. Artemjev, “Magneto-optic properties of nickel, iron, and cobalt,” J. Appl. Phys. 39, 1276–1278 (1968).
[CrossRef]

Kübler, J.

I. Osterloh, P. M. Oppeneer, J. Sticht, and J. Kübler, “A theoretical study of the magneto-optical Kerr effect in FeX (X = Co, Ni, Pd, Pt),” J. Phys. Condens. Matter 6, 285–292 (1994).
[CrossRef]

Kuryoz, P. Yu.

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi A 210, 2445–2455 (2013).
[CrossRef]

Lampel, G.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

Lapchuk, A. S.

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Lozovski, V.

Lukaszew, R. A.

Makarov, D.

Marini, A.

D. Sangalli, A. Marini, and A. Debernardi, “Pseudopotential-based first-principles approach to the magneto-optical Kerr effects: from metals to the inclusion of local fields and excitonic effects,” Phys. Rev. B 86, 125139 (2012).
[CrossRef]

Marliere, C.

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

Mironyuk, B. M.

V. G. Kravets, L. V. Poperenko, and B. M. Mironyuk, “Magneto-optical recording on the multilayers systems with plasmon excitation,” Opt. Commun. 282, 1099–1103 (2009).
[CrossRef]

Oppeneer, P. M.

I. Osterloh, P. M. Oppeneer, J. Sticht, and J. Kübler, “A theoretical study of the magneto-optical Kerr effect in FeX (X = Co, Ni, Pd, Pt),” J. Phys. Condens. Matter 6, 285–292 (1994).
[CrossRef]

Osterloh, I.

I. Osterloh, P. M. Oppeneer, J. Sticht, and J. Kübler, “A theoretical study of the magneto-optical Kerr effect in FeX (X = Co, Ni, Pd, Pt),” J. Phys. Condens. Matter 6, 285–292 (1994).
[CrossRef]

Peretti, J.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

Poperenko, L. V.

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi A 210, 2445–2455 (2013).
[CrossRef]

V. G. Kravets, L. V. Poperenko, and B. M. Mironyuk, “Magneto-optical recording on the multilayers systems with plasmon excitation,” Opt. Commun. 282, 1099–1103 (2009).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschr. 23, 2135–2138 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Reim, W.

W. Reim and J. Schones, Magneto Optical Spectroscopy, Ferromagnetic Materials (Elsevier Science, 1990), Vol. 5.

Robinson, C. C.

Safarov, V. I.

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

Sangalli, D.

D. Sangalli, A. Marini, and A. Debernardi, “Pseudopotential-based first-principles approach to the magneto-optical Kerr effects: from metals to the inclusion of local fields and excitonic effects,” Phys. Rev. B 86, 125139 (2012).
[CrossRef]

Schmidt, O. G.

Schones, J.

W. Reim and J. Schones, Magneto Optical Spectroscopy, Ferromagnetic Materials (Elsevier Science, 1990), Vol. 5.

Skuza, J. R.

Stern, E. A.

E. A. Stern, “Faraday effect in magnetized solids,” Phys. Rev. Lett. 15, 62–66 (1965).
[CrossRef]

Sticht, J.

I. Osterloh, P. M. Oppeneer, J. Sticht, and J. Kübler, “A theoretical study of the magneto-optical Kerr effect in FeX (X = Co, Ni, Pd, Pt),” J. Phys. Condens. Matter 6, 285–292 (1994).
[CrossRef]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Yang, K.

Zhdanov, A. G.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

Zvesdin, A. K.

Zvezdin, A. K.

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

A. K. Zvezdin and V. A. Kotov, Modern Magneto-optics and Magneto-optical Materials (IOP Publishing, 1997).

Adv. Opt. Mater.

G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97, 261908 (2010).
[CrossRef]

J. Appl. Phys.

G. S. Krinchik and V. A. Artemjev, “Magneto-optic properties of nickel, iron, and cobalt,” J. Appl. Phys. 39, 1276–1278 (1968).
[CrossRef]

J. Magn. Magn. Mater.

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300, e260–e263 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

I. Osterloh, P. M. Oppeneer, J. Sticht, and J. Kübler, “A theoretical study of the magneto-optical Kerr effect in FeX (X = Co, Ni, Pd, Pt),” J. Phys. Condens. Matter 6, 285–292 (1994).
[CrossRef]

Nat. Photonics

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonic in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Opt. Commun.

V. G. Kravets, L. V. Poperenko, and B. M. Mironyuk, “Magneto-optical recording on the multilayers systems with plasmon excitation,” Opt. Commun. 282, 1099–1103 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

D. Sangalli, A. Marini, and A. Debernardi, “Pseudopotential-based first-principles approach to the magneto-optical Kerr effects: from metals to the inclusion of local fields and excitonic effects,” Phys. Rev. B 86, 125139 (2012).
[CrossRef]

C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B 64, 235422 (2001).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

E. A. Stern, “Faraday effect in magnetized solids,” Phys. Rev. Lett. 15, 62–66 (1965).
[CrossRef]

V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marliere, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett. 73, 3584–3587 (1994).
[CrossRef]

Phys. Status Solidi A

P. Yu. Kuryoz, L. V. Poperenko, and V. G. Kravets, “Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films,” Phys. Status Solidi A 210, 2445–2455 (2013).
[CrossRef]

Surf. Sci.

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

Z. Naturforschr.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschr. 23, 2135–2138 (1968).

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

W. Reim and J. Schones, Magneto Optical Spectroscopy, Ferromagnetic Materials (Elsevier Science, 1990), Vol. 5.

B. Heinrich, “Ferromagnetic resonance in ultrathin film structures,” in Ultrathin Magnetic Structures, B. Heinrich and J. A. C. Bland, eds. (Springer-Verlag, 1994), pp. 195–222.

A. K. Zvezdin and V. A. Kotov, Modern Magneto-optics and Magneto-optical Materials (IOP Publishing, 1997).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of glass/FeNi/Ag(Au,Cu) multilayer structure for the Kretschmann configuration measurements of ellipsometric and MO characteristics used in the present study. (b) Plots of the MO properties for thick Ni films (data taken from Refs. [14,15]). (c) Theoretical MO polar Kerr rotation θK for a glass/FeNi(8 nm)/Ag(Au,Cu) multilayer structure. (d) Ellipticity ηK for a glass/FeNi(8 nm)/Ag(Au,Cu) multilayer structure.

Fig. 2.
Fig. 2.

(a) Experimental dependence of the optical properties for a growing Ag(35 nm), Au(25 nm), and Cu(25 nm): the real and imaginary parts of the complex dielectric function. (b) Real and imaginary parts of the complex dielectric function as a function of the thickness of magnetic NiFe film. (c) Comparison of the ratio (ε1nm2/ε2nm) for noble-metal thin films. (d) Comparison of the ratio (ε12/ε2) for transition metal NiFe, Ni, and Fe films. (e) Experimental MO Kerr rotation spectra for NiFe as a function of film thickness. (f) Complex polar Kerr rotation spectra for a NiFe thick layer.

Fig. 3.
Fig. 3.

(a) Experimental dependence of the p-polarized reflectivity Rp(λ) in Kretchmann configuration for the glass/FeNi(7–11 nm)/Ag(35 nm) bilayers at angle of incidence φ=59°. (b) Experimental MO Kerr rotation (θK) spectra for the glass/FeNi(7–11 nm)/Ag(35 nm) multilayer structure in Kretchmann configuration at φ=59°. (c) Ellipticity ηK under the same conditions.

Fig. 4.
Fig. 4.

(a) Experimental dependence of the p-polarized reflectivity Rp(λ) in Kretchmann configuration for the glass/FeNi(7–11 nm)/Au(25 nm) bilayers at angle of incidence φ=55°. (b) Experimental MO Kerr rotation (θK) spectra for the glass/FeNi(7–11 nm)/Au(25 nm) multilayer structure in Kretchmann configuration at φ=55°. (c) Ellipticity ηK under the same conditions.

Fig. 5.
Fig. 5.

(a) Experimental dependence of the p-polarized reflectivity Rp(λ) in Kretchmann configuration for the glass/FeNi(7–11 nm)/Cu(25 nm) bilayers at angle of incidence φ=53°. (b) Experimental MO Kerr rotation (θK) spectra for the glass/FeNi(7–11 nm)/Cu(25 nm) multilayer structure in Kretchmann configuration at φ=53°. (c) Ellipticity ηK under the same conditions.

Fig. 6.
Fig. 6.

(a) Energy dependence of the MO parameter Q for investigated NiFe films, as obtained from ellipsometric and polar Kerr characterization. (b) Energy dependence of the real part of ΔkSP obtained for magnetoplasmonic bilayers with three different noble metal films: Ag, Au, and Cu. (c) Energy dependence of the imaginary part of ΔkSP under the same conditions.

Tables (1)

Tables Icon

Table 1. Values of the Drude–Lorentz Model Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θKs=rps/rss,θKp=rsp/rpp.
εnm=ε0ωp2ω2+iωγj=13ΔεjΩj2ω2Ωj2+iωΓj,
LSPP=(2Im(kSP))1=cω(ε1nm+εairε1nmεair)3/2ε1nm2ε2nm,
ksp±k0εdεnmεnmεd(112Qεdεnmεd),
θKatg(i(r+r)r++r)i(kSP+kSP)kSP++kSP.
Δksp=ksp(B)k0sp=12(kSP+kSP),

Metrics