Abstract

This article reports luminescence studies on wet-chemical route prepared YVO4:Er3+/Yb3+ microdisc phosphor. The 980 nm laser excited upconversion (UC) emission intensity ratio of green to red bands is found too high to neglect the contribution from the red emission band, which is not observed normally in Er3+/Yb3+-doped materials. The red emission is also found absent in the downconversion emission under excitation at 316 nm. The variation of UC intensities with external temperature exhibits a well-fashioned pattern, which suggests that the H11/22 and S3/24 levels of Er3+ ion are thermally coupled. The YVO4:Er3+/Yb3+ phosphor has shown outstanding temperature-sensing behavior with maximum sensitivity of 0.0117K1 at 400 K. This material is also employed to develop a latent fingerprint in green color. Furthermore, the present phosphor could be useful for solar cell concentrators, drug delivery, and disease therapy applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002).
    [CrossRef]
  2. F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
    [CrossRef]
  3. T. Justel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem., Int. Ed. Engl. 37, 3084–3103 (1998).
    [CrossRef]
  4. E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
    [CrossRef]
  5. A. K. Singh, S. Singh, D. Kumar, D. K. Rai, S. B. Rai, and K. Kumar, “Light-into-heat conversion in La2O3:Er3+-Yb3+ phosphor: an incandescent emission,” Opt. Lett. 37, 776–778 (2012).
    [CrossRef]
  6. S. K. Singh, K. Kumar, and S. B. Rai, “Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route,” Appl. Phys. B 94, 165–173 (2009).
    [CrossRef]
  7. D. K. Chatterjee and Y. Zhang, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine 3, 73–82 (2008).
    [CrossRef]
  8. N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
    [CrossRef]
  9. N. Kotov, “Bioimaging: the only way is up,” Nat. Mater. 10, 903–904 (2011).
    [CrossRef]
  10. S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011).
    [CrossRef]
  11. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
    [CrossRef]
  12. W. Ryba-Romanowski, “YVO4 crystals-puzzles and challenges,” Cryst. Res. Technol. 38, 225–236 (2003).
    [CrossRef]
  13. S. A. Miller, H. H. Caspers, and H. E. Rast, “Lattice vibrations of yttrium vanadate,” Phys. Rev. 168, 964–969 (1968).
    [CrossRef]
  14. X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
    [CrossRef]
  15. Y. F. Ruan, X. M. Wang, and T. Tsuboi, “Up-conversion in Er3+-doped LiNbO3 crystals,” J. Alloys Compd. 275-277, 246–249 (1998).
    [CrossRef]
  16. P. Huang, D. Chen, and Y. Wang, “Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals,” J. Alloys Compd. 509, 3375–3381 (2011).
    [CrossRef]
  17. G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
    [CrossRef]
  18. S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
    [CrossRef]
  19. Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012).
    [CrossRef]
  20. K. Riwotzki and M. Haase, “Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy),” J. Phys. Chem. B 102, 10129–10135 (1998).
    [CrossRef]
  21. H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008).
    [CrossRef]
  22. G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
    [CrossRef]
  23. J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013).
    [CrossRef]
  24. F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.
  25. J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
    [CrossRef]
  26. J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
    [CrossRef]
  27. S. Som and S. K. Sharma, “Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization,” J. Phys. D 45, 415102 (2012).
    [CrossRef]
  28. Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
    [CrossRef]
  29. A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. S 53, 18–22 (2007).
  30. V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
    [CrossRef]
  31. M. K. Mahata, K. Kumar, and V. K. Rai, “Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method,” Spectrochim. Acta, Part A 124, 285–291 (2014).
  32. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
    [CrossRef]
  33. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
    [CrossRef]
  34. M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, “Spectroscopic properties of Er3+ and Yb3+ doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
    [CrossRef]
  35. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
    [CrossRef]
  36. M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013).
    [CrossRef]
  37. M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
    [CrossRef]
  38. C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Fingerprint and Other Ridge Skin Impression (CRC Press, 2004).
  39. V. Singh, V. K. Rai, and M. Haase, “Intense green and red upconversion emission of Er3+, Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction,” J. Appl. Phys. 112, 063105 (2012).
    [CrossRef]
  40. D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
    [CrossRef]
  41. J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
    [CrossRef]
  42. Z. A. Timimi, M. S. Jaafar, and M. Z. M. Jafri, “Photodynamic therapy and green laser blood therapy,” Glob. J. Med. Res. 11, 22–27 (2011).

2014 (1)

M. K. Mahata, K. Kumar, and V. K. Rai, “Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method,” Spectrochim. Acta, Part A 124, 285–291 (2014).

2013 (2)

M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013).
[CrossRef]

J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013).
[CrossRef]

2012 (5)

S. Som and S. K. Sharma, “Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization,” J. Phys. D 45, 415102 (2012).
[CrossRef]

A. K. Singh, S. Singh, D. Kumar, D. K. Rai, S. B. Rai, and K. Kumar, “Light-into-heat conversion in La2O3:Er3+-Yb3+ phosphor: an incandescent emission,” Opt. Lett. 37, 776–778 (2012).
[CrossRef]

Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012).
[CrossRef]

V. Singh, V. K. Rai, and M. Haase, “Intense green and red upconversion emission of Er3+, Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction,” J. Appl. Phys. 112, 063105 (2012).
[CrossRef]

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[CrossRef]

2011 (7)

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
[CrossRef]

Z. A. Timimi, M. S. Jaafar, and M. Z. M. Jafri, “Photodynamic therapy and green laser blood therapy,” Glob. J. Med. Res. 11, 22–27 (2011).

P. Huang, D. Chen, and Y. Wang, “Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals,” J. Alloys Compd. 509, 3375–3381 (2011).
[CrossRef]

N. Kotov, “Bioimaging: the only way is up,” Nat. Mater. 10, 903–904 (2011).
[CrossRef]

S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011).
[CrossRef]

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

2010 (2)

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

2009 (3)

S. K. Singh, K. Kumar, and S. B. Rai, “Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route,” Appl. Phys. B 94, 165–173 (2009).
[CrossRef]

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

2008 (3)

H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008).
[CrossRef]

G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
[CrossRef]

D. K. Chatterjee and Y. Zhang, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine 3, 73–82 (2008).
[CrossRef]

2007 (2)

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[CrossRef]

A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. S 53, 18–22 (2007).

2006 (1)

Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
[CrossRef]

2005 (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

2004 (2)

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
[CrossRef]

2003 (2)

W. Ryba-Romanowski, “YVO4 crystals-puzzles and challenges,” Cryst. Res. Technol. 38, 225–236 (2003).
[CrossRef]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

2002 (1)

O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002).
[CrossRef]

1998 (3)

Y. F. Ruan, X. M. Wang, and T. Tsuboi, “Up-conversion in Er3+-doped LiNbO3 crystals,” J. Alloys Compd. 275-277, 246–249 (1998).
[CrossRef]

K. Riwotzki and M. Haase, “Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy),” J. Phys. Chem. B 102, 10129–10135 (1998).
[CrossRef]

T. Justel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem., Int. Ed. Engl. 37, 3084–3103 (1998).
[CrossRef]

1997 (2)

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, “Spectroscopic properties of Er3+ and Yb3+ doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

1996 (2)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
[CrossRef]

1968 (1)

S. A. Miller, H. H. Caspers, and H. E. Rast, “Lattice vibrations of yttrium vanadate,” Phys. Rev. 168, 964–969 (1968).
[CrossRef]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

Bettinelli, M.

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.

Brik, M. G.

G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
[CrossRef]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.

Caspers, H. H.

S. A. Miller, H. H. Caspers, and H. E. Rast, “Lattice vibrations of yttrium vanadate,” Phys. Rev. 168, 964–969 (1968).
[CrossRef]

Cavalli, E.

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.

Champod, C.

C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Fingerprint and Other Ridge Skin Impression (CRC Press, 2004).

Chatterjee, D. K.

D. K. Chatterjee and Y. Zhang, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine 3, 73–82 (2008).
[CrossRef]

Chen, D.

P. Huang, D. Chen, and Y. Wang, “Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals,” J. Alloys Compd. 509, 3375–3381 (2011).
[CrossRef]

Chen, T. M.

Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012).
[CrossRef]

Chen, Y. C.

Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012).
[CrossRef]

Cockroft, N. J.

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, “Spectroscopic properties of Er3+ and Yb3+ doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

Coppabianco, J. A.

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

Cusso, F.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Dong, N.

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

Downing, E.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Du, H.

J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013).
[CrossRef]

Durkop, A.

O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002).
[CrossRef]

Ermeneux, F. S.

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.

Errandonea, D.

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

Ferrand, B.

X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
[CrossRef]

Fu, X.

H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008).
[CrossRef]

Gao, D.

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[CrossRef]

Gao, W.

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[CrossRef]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Gosnell, T. R.

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, “Spectroscopic properties of Er3+ and Yb3+ doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Güdel, H. U.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Guo, H.

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

Haase, M.

V. Singh, V. K. Rai, and M. Haase, “Intense green and red upconversion emission of Er3+, Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction,” J. Appl. Phys. 112, 063105 (2012).
[CrossRef]

K. Riwotzki and M. Haase, “Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy),” J. Phys. Chem. B 102, 10129–10135 (1998).
[CrossRef]

Hanfland, M.

X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, “Spectroscopic properties of Er3+ and Yb3+ doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Hirano, S.

S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
[CrossRef]

Ho, P. C.

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

Hou, Z.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Huang, P.

P. Huang, D. Chen, and Y. Wang, “Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals,” J. Alloys Compd. 509, 3375–3381 (2011).
[CrossRef]

Huang, Y.

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

Idris, N. M.

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

Jaafar, M. S.

Z. A. Timimi, M. S. Jaafar, and M. Z. M. Jafri, “Photodynamic therapy and green laser blood therapy,” Glob. J. Med. Res. 11, 22–27 (2011).

Jafri, M. Z. M.

Z. A. Timimi, M. S. Jaafar, and M. Z. M. Jafri, “Photodynamic therapy and green laser blood therapy,” Glob. J. Med. Res. 11, 22–27 (2011).

Jaque, D.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Jia, G.

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Justel, T.

T. Justel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem., Int. Ed. Engl. 37, 3084–3103 (1998).
[CrossRef]

Kabro, P.

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.

Kang, X.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Kikuta, K.

S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
[CrossRef]

Kityk, I. V.

G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
[CrossRef]

Koganei, H.

S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
[CrossRef]

Kon, X.

Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
[CrossRef]

Kotov, N.

N. Kotov, “Bioimaging: the only way is up,” Nat. Mater. 10, 903–904 (2011).
[CrossRef]

Kotov, N. A.

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[CrossRef]

Kumar, D.

Kumar, G. A.

G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
[CrossRef]

Kumar, K.

M. K. Mahata, K. Kumar, and V. K. Rai, “Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method,” Spectrochim. Acta, Part A 124, 285–291 (2014).

M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013).
[CrossRef]

A. K. Singh, S. Singh, D. Kumar, D. K. Rai, S. B. Rai, and K. Kumar, “Light-into-heat conversion in La2O3:Er3+-Yb3+ phosphor: an incandescent emission,” Opt. Lett. 37, 776–778 (2012).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, “Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route,” Appl. Phys. B 94, 165–173 (2009).
[CrossRef]

Kumari, A.

M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013).
[CrossRef]

Lakshmi, B.

S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011).
[CrossRef]

Lakshminarayana, G.

G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
[CrossRef]

Lee, J.

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[CrossRef]

Lennard, C.

C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Fingerprint and Other Ridge Skin Impression (CRC Press, 2004).

Li, C.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Li, G.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Li, Z. Q.

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

Lin, J.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Lin, Z.

O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002).
[CrossRef]

Liu, H.

Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
[CrossRef]

Liu, X.

J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013).
[CrossRef]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
[CrossRef]

Liu, Z.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
[CrossRef]

Loa, I.

X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
[CrossRef]

Lopez-Moreno, S.

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

Lou, L.

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Maestro, L. M.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Mahata, M. K.

M. K. Mahata, K. Kumar, and V. K. Rai, “Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method,” Spectrochim. Acta, Part A 124, 285–291 (2014).

M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013).
[CrossRef]

Mahendran, R.

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

Margot, P.

C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Fingerprint and Other Ridge Skin Impression (CRC Press, 2004).

Miller, S. A.

S. A. Miller, H. H. Caspers, and H. E. Rast, “Lattice vibrations of yttrium vanadate,” Phys. Rev. 168, 964–969 (1968).
[CrossRef]

Moncorge, R.

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.

Mora, E. S.

A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. S 53, 18–22 (2007).

Morales, A. E.

A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. S 53, 18–22 (2007).

Muñoz, A.

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Nikol, H.

T. Justel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem., Int. Ed. Engl. 37, 3084–3103 (1998).
[CrossRef]

Niu, S.

H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008).
[CrossRef]

Pal, U.

A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. S 53, 18–22 (2007).

Panchal, V.

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

Pandian, K.

S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011).
[CrossRef]

Qiu, J.

G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
[CrossRef]

Quintanilla, M.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Rai, D. K.

Rai, S. B.

A. K. Singh, S. Singh, D. Kumar, D. K. Rai, S. B. Rai, and K. Kumar, “Light-into-heat conversion in La2O3:Er3+-Yb3+ phosphor: an incandescent emission,” Opt. Lett. 37, 776–778 (2012).
[CrossRef]

S. K. Singh, K. Kumar, and S. B. Rai, “Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route,” Appl. Phys. B 94, 165–173 (2009).
[CrossRef]

Rai, V. K.

M. K. Mahata, K. Kumar, and V. K. Rai, “Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method,” Spectrochim. Acta, Part A 124, 285–291 (2014).

M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013).
[CrossRef]

V. Singh, V. K. Rai, and M. Haase, “Intense green and red upconversion emission of Er3+, Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction,” J. Appl. Phys. 112, 063105 (2012).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Rast, H. E.

S. A. Miller, H. H. Caspers, and H. E. Rast, “Lattice vibrations of yttrium vanadate,” Phys. Rev. 168, 964–969 (1968).
[CrossRef]

Riwotzki, K.

K. Riwotzki and M. Haase, “Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy),” J. Phys. Chem. B 102, 10129–10135 (1998).
[CrossRef]

Rodríguez, E. M.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Rodríguez-Hernandez, P.

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

Ronda, C.

T. Justel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem., Int. Ed. Engl. 37, 3084–3103 (1998).
[CrossRef]

Ruan, Y. F.

Y. F. Ruan, X. M. Wang, and T. Tsuboi, “Up-conversion in Er3+-doped LiNbO3 crystals,” J. Alloys Compd. 275-277, 246–249 (1998).
[CrossRef]

Ryba-Romanowski, W.

W. Ryba-Romanowski, “YVO4 crystals-puzzles and challenges,” Cryst. Res. Technol. 38, 225–236 (2003).
[CrossRef]

Sakamoto, W.

S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
[CrossRef]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Sathya, S.

S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011).
[CrossRef]

Segura, A.

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

Sharma, S. K.

S. Som and S. K. Sharma, “Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization,” J. Phys. D 45, 415102 (2012).
[CrossRef]

Sim, E. K.

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

Singh, A. K.

Singh, S.

Singh, S. K.

S. K. Singh, K. Kumar, and S. B. Rai, “Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route,” Appl. Phys. B 94, 165–173 (2009).
[CrossRef]

Singh, V.

V. Singh, V. K. Rai, and M. Haase, “Intense green and red upconversion emission of Er3+, Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction,” J. Appl. Phys. 112, 063105 (2012).
[CrossRef]

Solé, J. G.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Som, S.

S. Som and S. K. Sharma, “Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization,” J. Phys. D 45, 415102 (2012).
[CrossRef]

Song, Y.

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

Stoilovic, M.

C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Fingerprint and Other Ridge Skin Impression (CRC Press, 2004).

Sudhagar, S.

S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011).
[CrossRef]

Sun, J.

J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013).
[CrossRef]

Sun, Y.

Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
[CrossRef]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

Syassen, K.

X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
[CrossRef]

Timimi, Z. A.

Z. A. Timimi, M. S. Jaafar, and M. Z. M. Jafri, “Photodynamic therapy and green laser blood therapy,” Glob. J. Med. Res. 11, 22–27 (2011).

Tsuboi, T.

Y. F. Ruan, X. M. Wang, and T. Tsuboi, “Up-conversion in Er3+-doped LiNbO3 crystals,” J. Alloys Compd. 275-277, 246–249 (1998).
[CrossRef]

Vetrone, F.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

Wang, C.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
[CrossRef]

Wang, D. Y.

Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012).
[CrossRef]

Wang, F.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
[CrossRef]

Wang, J.

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
[CrossRef]

Wang, X.

Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
[CrossRef]

X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
[CrossRef]

Wang, X. M.

Y. F. Ruan, X. M. Wang, and T. Tsuboi, “Up-conversion in Er3+-doped LiNbO3 crystals,” J. Alloys Compd. 275-277, 246–249 (1998).
[CrossRef]

Wang, Y.

P. Huang, D. Chen, and Y. Wang, “Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals,” J. Alloys Compd. 509, 3375–3381 (2011).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002).
[CrossRef]

Wu, M.

O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002).
[CrossRef]

Wu, Y. C.

Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012).
[CrossRef]

Xia, S.

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

Xin, Q.

H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008).
[CrossRef]

Xu, Z.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Yang, D.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Yang, M.

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

Ye, L.

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

Yin, M.

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

Yogo, T.

S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
[CrossRef]

You, H.

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

Zamarron, A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

Zhang, C.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

Zhang, H.

H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008).
[CrossRef]

Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
[CrossRef]

Zhang, L.

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

Zhang, W.

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

Zhang, X.

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[CrossRef]

Zhang, Y.

D. K. Chatterjee and Y. Zhang, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine 3, 73–82 (2008).
[CrossRef]

Zhu, J.

J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013).
[CrossRef]

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodríguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[CrossRef]

AIP Conf. Proc. (1)

M. K. Mahata, A. Kumari, V. K. Rai, and K. Kumar, “Er3+, Yb3+ doped yttrium oxide phosphor as a temperature sensor,” AIP Conf. Proc. 1536, 1270–1271 (2013).
[CrossRef]

Angew. Chem., Int. Ed. (2)

O. S. Wolfbeis, A. Durkop, M. Wu, and Z. Lin, “A Europium-ion-based luminescent sensing probe for hydrogen peroxide,” Angew. Chem., Int. Ed. 41, 4495–4498 (2002).
[CrossRef]

J. Wang, F. Wang, C. Wang, Z. Liu, and X. Liu, “Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals,” Angew. Chem., Int. Ed. 50, 10369–10372 (2011).
[CrossRef]

Angew. Chem., Int. Ed. Engl. (1)

T. Justel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem., Int. Ed. Engl. 37, 3084–3103 (1998).
[CrossRef]

Appl. Phys. B (1)

S. K. Singh, K. Kumar, and S. B. Rai, “Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route,” Appl. Phys. B 94, 165–173 (2009).
[CrossRef]

Appl. Phys. Express (1)

M. Quintanilla, E. Cantelar, F. Cusso, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4, 022601 (2011).
[CrossRef]

Biomaterials (1)

N. M. Idris, Z. Q. Li, L. Ye, E. K. Sim, R. Mahendran, and P. C. Ho, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30, 5104–5113 (2009).
[CrossRef]

Biotechnol. Lett. (1)

S. Sudhagar, S. Sathya, K. Pandian, and B. Lakshmi, “Targeting and sensing cancer cells with ZnO nanoprobes in vitro,” Biotechnol. Lett. 33, 1891–1896 (2011).
[CrossRef]

Chem. Mater. (1)

Y. Sun, H. Liu, X. Wang, X. Kon, and H. Zhang, “Combustion synthesis and characterization of Er3+ -doped and Er3+, Yb3+ -codoped YVO4 nanophosphors oriented for luminescent biolabeling applications,” Chem. Mater. 18, 2726–2732 (2006).
[CrossRef]

Chem. Phys. (1)

J. A. Coppabianco, P. Kabro, F. S. Ermeneux, R. Moncorge, M. Bettinelli, and E. Cavalli, “Optical spectroscopy, fluorescence dynamics and crystal-field analysis of Er3+ in YVO4,” Chem. Phys. 214, 329–340 (1997).
[CrossRef]

Cryst. Res. Technol. (1)

W. Ryba-Romanowski, “YVO4 crystals-puzzles and challenges,” Cryst. Res. Technol. 38, 225–236 (2003).
[CrossRef]

Glob. J. Med. Res. (1)

Z. A. Timimi, M. S. Jaafar, and M. Z. M. Jafri, “Photodynamic therapy and green laser blood therapy,” Glob. J. Med. Res. 11, 22–27 (2011).

Inorg. Chem. (1)

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[CrossRef]

J. Alloys Compd. (3)

Y. F. Ruan, X. M. Wang, and T. Tsuboi, “Up-conversion in Er3+-doped LiNbO3 crystals,” J. Alloys Compd. 275-277, 246–249 (1998).
[CrossRef]

P. Huang, D. Chen, and Y. Wang, “Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals,” J. Alloys Compd. 509, 3375–3381 (2011).
[CrossRef]

H. Zhang, X. Fu, S. Niu, and Q. Xin, “Synthesis and luminescent properties of nanosized YVO4:Ln (Ln = Sm, Dy),” J. Alloys Compd. 457, 61–65 (2008).
[CrossRef]

J. Am. Ceram. Soc. (1)

S. Hirano, T. Yogo, K. Kikuta, W. Sakamoto, and H. Koganei, “Synthesis of Nd: YVO4 thin films by a sol-gel method,” J. Am. Ceram. Soc. 79, 3041–3044 (1996).
[CrossRef]

J. Appl. Phys. (4)

V. Panchal, D. Errandonea, A. Segura, P. Rodríguez-Hernandez, A. Muñoz, S. Lopez-Moreno, and M. Bettinelli, “The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution,” J. Appl. Phys. 110, 043723 (2011).
[CrossRef]

V. Singh, V. K. Rai, and M. Haase, “Intense green and red upconversion emission of Er3+, Yb3+ co-doped CaZrO3 obtained by a solution combustion reaction,” J. Appl. Phys. 112, 063105 (2012).
[CrossRef]

D. Gao, X. Zhang, and W. Gao, “Tuning upconversion emission by controlling particle shape in NaYF4:Yb3+/Er3+ nanocrystals,” J. Appl. Phys. 111, 033505 (2012).
[CrossRef]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[CrossRef]

J. Mater. Chem. (1)

Y. C. Chen, Y. C. Wu, D. Y. Wang, and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+, Eu3+ nanocrystals by a facile hydrothermal process,” J. Mater. Chem. 22, 7961–7969 (2012).
[CrossRef]

J. Phys. Chem. B (2)

K. Riwotzki and M. Haase, “Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy),” J. Phys. Chem. B 102, 10129–10135 (1998).
[CrossRef]

H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, “Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals,” J. Phys. Chem. B 108, 19205–19209 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

G. Lakshminarayana, J. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “Spectral analysis of Er3+-, Er3+/Yb3+- and Er3+/Tm3+/Yb3+-doped TeO2-ZnO-WO3-TiO2-Na2O glasses,” J. Phys. Condens. Matter 20, 375101 (2008).
[CrossRef]

J. Phys. D (1)

S. Som and S. K. Sharma, “Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization,” J. Phys. D 45, 415102 (2012).
[CrossRef]

Mater. Res. Bull. (1)

J. Sun, J. Zhu, X. Liu, and H. Du, “Bright white up-conversion emission from Er3+/Ho3+/Tm3+/Yb3+ co-doped YVO4 phosphors,” Mater. Res. Bull. 48, 2175–2179 (2013).
[CrossRef]

Nano Today (1)

J. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today 2(1), 48–51 (2007).
[CrossRef]

Nanomedicine (1)

D. K. Chatterjee and Y. Zhang, “Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells,” Nanomedicine 3, 73–82 (2008).
[CrossRef]

Nat. Mater. (1)

N. Kotov, “Bioimaging: the only way is up,” Nat. Mater. 10, 903–904 (2011).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (Amsterdam) (1)

G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You, “Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: solvothermal synthesis and luminescence properties,” Opt. Mater. (Amsterdam) 31, 1032–1037 (2009).
[CrossRef]

Phys. Rev. (1)

S. A. Miller, H. H. Caspers, and H. E. Rast, “Lattice vibrations of yttrium vanadate,” Phys. Rev. 168, 964–969 (1968).
[CrossRef]

Phys. Rev. B (3)

X. Wang, I. Loa, K. Syassen, M. Hanfland, and B. Ferrand, “Structural properties of zircon- and scheelite-type phases of YVO4 at high pressure,” Phys. Rev. B 70, 064109 (2004).
[CrossRef]

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71, 125123 (2005).
[CrossRef]

M. P. Hehlen, N. J. Cockroft, and T. R. Gosnell, “Spectroscopic properties of Er3+ and Yb3+ doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997).
[CrossRef]

Rev. Mex. Fis. S (1)

A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Rev. Mex. Fis. S 53, 18–22 (2007).

Science (1)

E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Spectrochim. Acta, Part A (1)

M. K. Mahata, K. Kumar, and V. K. Rai, “Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method,” Spectrochim. Acta, Part A 124, 285–291 (2014).

Other (2)

C. Champod, C. Lennard, P. Margot, and M. Stoilovic, Fingerprint and Other Ridge Skin Impression (CRC Press, 2004).

F. S. Ermeneux, R. Moncorge, P. Kabro, J. A. Capobianco, M. Bettinelli, and E. Cavalli, “Crystal growth and luminescence properties of Er3+ doped YVO4 single crystals,” in Advanced Solid State Lasers, S. Payne and C. Pollack, eds., Vol. 1 of OSA Trends in Optics and Photonics Series(Optical Society of America, 1996), paper SM9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) XRD pattern of the YVO4:Er3+/Yb3+ crystals annealed at 800°C. (b) Williamson–Hall plot of YVO4:Er3+/Yb3+ nanophosphor.

Fig. 2.
Fig. 2.

FTIR spectrum of YVO4:Er3+/Yb3+ phosphor annealed at 800°C.

Fig. 3.
Fig. 3.

(a) and (b) SEM images. (c) EDS spectrum of Er3+/Yb3+:YVO4 nanophosphor.

Fig. 4.
Fig. 4.

Diffuse reflectance spectrum of Er3+/Yb3+-doped YVO4.

Fig. 5.
Fig. 5.

(a) Luminescence (λexc=316nm) spectrum of Er3+/Yb3+:YVO4. (b) Schematic diagram of emission process.

Fig. 6.
Fig. 6.

UC emission spectrum (at power 203 mW) of YVO4:Yb3+/Er3+ nanophosphor (inset shows the lifetime decay curves of H11/22, and S3/24 levels with single exponential fitting).

Fig. 7.
Fig. 7.

Variation of UC emission intensity with different excitation powers (inset shows the ln I-ln P plot of 525 and 554 nm emission bands).

Fig. 8.
Fig. 8.

(a) Fluorescence intensity ratio of H11/22I15/24 and S3/24I15/24 transitions with pump power. (b) Monolog plot of the FIR (I524/I554) as a function of inverse absolute temperature.

Fig. 9.
Fig. 9.

Sensitivity (S) as a function of absolute temperature (T).

Fig. 10.
Fig. 10.

(a) Fresh fingerprint on glass by dry powdering with YVO4:Er3+/Yb3+, illumination at 980 nm. (b) Comparative spectra of Er3+/Yb3+-codoped YVO4 and Y2O3 phosphors at 860 mW power (inset shows the photographs of the two samples).

Tables (1)

Tables Icon

Table 1. Variation of Color Coordinates with Power

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D=0.9λβcosθ,
βcosθλ=1D+εsinθλ,
Wmp(T)=Wmp(0)[1ehϑkT]n,
Wmp(0)=βeα(ΔE2hϑmax),
FIR=I525I554=Bexp(ΔEKBT),
B=WHgHhνHWSgShνS,
S=(FIR)T=FIR×ΔEKBT2,

Metrics