Abstract

We have theoretically and experimentally investigated the V-type three-level system in hot sodium atomic vapor interacting with two optical waves: probe, resonant to the D1 line, and coupling, the D2 line. Theoretically, probe transmission spectra are simulated by using a perturbative treatment including eight hyperfine levels (multilevel system) in the 3S1/2, 3P1/2, and 3P3/2 states. The spectra are composed of linear absorption, saturated absorption, and electromagnetically induced transparency (EIT) signals. By comparing this simulation with the experimental results, we concluded that we have indeed observed EIT signals when the coupling beam is resonant to the D2-line closed transition.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  2. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
    [CrossRef]
  3. J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
    [CrossRef]
  4. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
    [CrossRef]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).
    [CrossRef]
  7. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
    [CrossRef]
  8. K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
    [CrossRef]
  9. R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
    [CrossRef]
  10. S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50  Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
    [CrossRef]
  11. R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
    [CrossRef]
  12. M. Merimaa, T. Lindvall, I. Tittonen, and E. Ikonen, “All-optical atomic clock based on coherent population trapping in 85Rb,” J. Opt. Soc. Am. B 20, 273–279 (2003).
    [CrossRef]
  13. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
    [CrossRef]
  14. M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef]
  15. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef]
  16. Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
    [CrossRef]
  17. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
    [CrossRef]
  18. J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
    [CrossRef]
  19. N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
    [CrossRef]
  20. B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
    [CrossRef]
  21. N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, and M. Mitsunaga, “Electromagnetically induced polarization rotation in Na vapor,” J. Opt. Soc. Am. B 29, 1717–1721 (2012).
    [CrossRef]
  22. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [CrossRef]
  23. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
    [CrossRef]
  24. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
    [CrossRef]
  25. D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
    [CrossRef]
  26. G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
    [CrossRef]
  27. S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
    [CrossRef]
  28. A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
    [CrossRef]
  29. K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
    [CrossRef]
  30. P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
    [CrossRef]

2013 (1)

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

2012 (2)

N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, and M. Mitsunaga, “Electromagnetically induced polarization rotation in Na vapor,” J. Opt. Soc. Am. B 29, 1717–1721 (2012).
[CrossRef]

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

2011 (3)

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef]

2010 (2)

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

2008 (1)

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

2007 (1)

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

2006 (1)

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2003 (1)

2001 (4)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).
[CrossRef]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

1999 (3)

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
[CrossRef]

J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

1998 (2)

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[CrossRef]

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

1997 (1)

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50  Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
[CrossRef]

1995 (5)

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

1991 (2)

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Adams, C. S.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Ahmed, E. H.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Anisimov, P. M.

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Boon, J. R.

J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

Brandt, S.

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[CrossRef]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50  Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
[CrossRef]

Busche, H.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

Chen, H.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Clarke, J. J.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

de Echaniz, S. R.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

Dowling, J. P.

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Dunn, M. H.

J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Durrant, A. V.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Field, J. E.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

Firstenberg, O.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Fry, E. S.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Fujisawa, A.

Fujita, K.

Fulton, D. J.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Gauguet, A.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Gorshkov, A. V.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Greentree, A. D.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

Hahn, K. H.

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

Harada, K.

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Hayashi, N.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Hofferberth, S.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Hombo, N.

N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, and M. Mitsunaga, “Electromagnetically induced polarization rotation in Na vapor,” J. Opt. Soc. Am. B 29, 1717–1721 (2012).
[CrossRef]

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

Huennekens, J.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Ikonen, E.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Jin, S.-Z.

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

Jones, M. P. A.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

Kido, H.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

Kirova, T.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Lazoudis, A.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Li, S.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Li, Y.-Q.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Liang, Q.-Y.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Lindvall, T.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).
[CrossRef]

Lukin, M. D.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Lyyra, A. M.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Ma, J.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

Maxwell, D.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

McGloin, D.

J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

Merimaa, M.

Meschede, D.

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[CrossRef]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50  Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
[CrossRef]

Mitsunaga, M.

N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, and M. Mitsunaga, “Electromagnetically induced polarization rotation in Na vapor,” J. Opt. Soc. Am. B 29, 1717–1721 (2012).
[CrossRef]

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Mori, K.

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Moseley, R. R.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Nagel, A.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
[CrossRef]

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[CrossRef]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50  Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
[CrossRef]

Nikonov, D. E.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Okuma, J.

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

Padmabandu, G. G.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Paredes-Barato, D.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

Peng, K. C.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Peyronel, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Pohl, T.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Pritchard, J. D.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

Qi, P.

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

Sander, F.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Sanders, B. C.

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef]

Scully, M. O.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Segal, D. M.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

Shepherd, S.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

Sugimura, S.

N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, and M. Mitsunaga, “Electromagnetically induced polarization rotation in Na vapor,” J. Opt. Soc. Am. B 29, 1717–1721 (2012).
[CrossRef]

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

Szwer, D. J.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

Takahashi, K.

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

Taniguchi, S.

Tittel, F. K.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Tittonen, I.

Vaccaro, J. A.

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

van Wijngaarden, W. A.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Vuletic, V.

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Wang, B.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Wang, H.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

Weatherill, K. J.

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

Weis, A.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[CrossRef]

Welch, G. R.

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

Wynands, R.

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
[CrossRef]

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[CrossRef]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50  Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
[CrossRef]

Xiao, M.

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Zekou, E.

J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Appl. Phys. B (1)

R. Wynands and A. Nagel, “Precision spectroscopy with coherent dark states,” Appl. Phys. B 68, 1–25 (1999).
[CrossRef]

Found. Phys. (1)

G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis, and F. K. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam,” Found. Phys. 28, 621–638 (1998).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012).
[CrossRef]

Nature (London) (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001).
[CrossRef]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Opt. Commun. (1)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Phys. Rev. A (12)

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

B. Wang, S. Li, J. Ma, H. Wang, K. C. Peng, and M. Xiao, “Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency,” Phys. Rev. A 73, 051801 (2006).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Observation of electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, “Parametric amplification in an electromagnetically-induced-transparency medium,” Phys. Rev. A 78, 013809 (2008).
[CrossRef]

S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50  Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
[CrossRef]

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of Zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, and J. A. Vaccaro, “Observation of a doubly driven V system probed to a fourth level in laser-cooled rubidium,” Phys. Rev. A 64, 013812 (2001).
[CrossRef]

A. Lazoudis, T. Kirova, E. H. Ahmed, P. Qi, J. Huennekens, and A. M. Lyyra, “Electromagnetically induced transparency in an open V-type molecular system,” Phys. Rev. A 83, 063419 (2011).
[CrossRef]

K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, “Coherent pump-probe spectroscopy in sodium vapor: from electromagnetically induced transparency to parametric amplification,” Phys. Rev. A 83, 063824 (2011).
[CrossRef]

Phys. Rev. Lett. (7)

P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef]

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Storage and control of optical photons using Rydberg polaritons,” Phys. Rev. Lett. 110, 103001 (2013).
[CrossRef]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef]

M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Energy-level diagram for the eight-level system in sodium vapor for the V-type EIT experiment. Probe is resonant to the D1 line, while coupling is resonant to the D2 line. Each level is numbered as |1 to |8 in this eight-level system.

Fig. 2.
Fig. 2.

Simulation of coupling detuning dependence of populations n1, n2, and n8. The other populations, n5, n6, and n7, are too small to observe. (They are less than 0.025.) The parameters used in this figure are given in the Fig. 3 caption.

Fig. 3.
Fig. 3.

Simulation of probe transmission spectrum in the presence of a coupling beam. δc/2π=1GHz, Ω15c=2Ωc, Ω16c=5Ωc, Ω17c=5Ωc, Ω26c=Ωc, Ω27c=5Ωc, Ω28c=14Ωc, and Ωc/2π=2MHz. γ/2π=5MHz, Γ/2π=10MHz, γt/2π=0.1MHz, ω21/2π=1772MHz, ω43/2π=189MHz, ω65/2π=16MHz, ω76/2π=36MHz, and ω87/2π=60MHz.

Fig. 4.
Fig. 4.

Expansion of the central structure of the probe transmission spectrum in Fig. 3. Top curve, LA+SA terms; middle curve, EIT term; bottom curve, total signal (LA+SA+EIT terms).

Fig. 5.
Fig. 5.

Schematic of the experimental setup: RDL, ring dye laser; PBS, polarizing beam splitter; HWP, half-wave plate; SMF, single-mode fiber; PD, photodetector. The cell temperature was 180°C. The atomic density was 1×1010/cm3. Beam powers were 90 μW (170 μW) for probe (coupling). The beam spot sizes of both beams were 700 μm.

Fig. 6.
Fig. 6.

Experimental probe transmission spectrum for the D1 line when the coupling beam is resonant to the D2 line. All the experimental parameters are given in the caption of Fig. 5.

Fig. 7.
Fig. 7.

Black, the central structure of the lock-in-detected probe transmission spectrum with the presence of coupling beam. Red, corresponding simulation based on our theory. Only SA+EIT spectrum is plotted excluding LA Fig. 4.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

=[E80000082810E70000727100E60006261000E50052510000E40424100000E33231282726252423E201817161514130E1],
m=pmEp(eiωpt+eiωpt)=Ωmp2(eiωpt+eiωpt)
n=pnEc(eiωct+eiωct)=Ωnc2(eiωct+eiωct),
n˙1=P17(n1n7)P16(n1n6)P15(n1n5)+Γ71n7+Γ61n6+Γ51n5Γt(n1n0)n˙2=P28(n2n8)P27(n2n7)P26(n2n6)+Γ82n8+Γ72n7+Γ62n6Γt(n2n0)n˙5=P15(n1n5)(Γ+Γt)n5n˙6=P16(n1n6)+P26(n2n6)(Γ+Γt)n6n˙7=P17(n1n7)+P27(n2n7)(Γ+Γt)n7n˙8=P28(n2n8)(Γ+Γt)n8,
P2n=γ|Ωn2|2/2(δcωn5+ω21)2+γ2P1n=γ|Ωn1|2/2(δcωn5)2+γ2,
ρ˙n=(γ+iδcn)ρn+i2(ρnnρ)Ωnc+i2m=34Ωmpρmnρ˙m=(γ+iδpm)ρm+i2(ρmmρ)Ωmp+i2n=58Ωncρnmρ˙mn=(2γ+iδ0nm)ρmn+i2=12Ωmp*ρni2=12Ωncρm,
ρm(1)=i2Ωmpγpm*nρn(1)=i2Ωncγcn*n,
ρmn(2)=14γ0nm*=12Ωmp*Ωnc(1γcn*+1γpm)n,
ρm(3)=i8γpm*n=58=12ΩncΩmpΩnc*γ0nm(1γcn+1γpm*)n.
S==12m=34pm(ρm(1)+ρm(3))=iEpm=34=12|pm|2γpm*n+iEp4m=34=12n=58=12pmpmΩncΩnc*γpm*γ0nm×(1γcn+1γpm*)n.
G(δD)exp[(2×0.83×δDωD)2].

Metrics