Abstract

We study the guided modes in a wire medium (WM) slab, taking into account the nonlocality and losses in the structure. We show that due to the fact that the WM is an extremely spatially dispersive metamaterial, the effect of nonlocality plays a critical role, since it results in coupling between the otherwise orthogonal guided modes. We observe the effects of strong and weak coupling, depending on the level of losses in the system.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Simovsky, P. A. Belov, A. V. Atrashenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4221–4342 (2012).
    [CrossRef]
  2. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
    [CrossRef]
  3. P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
    [CrossRef]
  4. P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
    [CrossRef]
  5. J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
    [CrossRef]
  6. P. Ginzburg, F. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Yu. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21, 14907–14917 (2013).
    [CrossRef]
  7. P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
    [CrossRef]
  8. Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
    [CrossRef]
  9. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef]
  10. M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
    [CrossRef]
  11. E. K. Stone and E. Hendry, “Dispersion of spoof surface plasmons in open-ended metallic hole arrays,” Phys. Rev. B 84, 035418 (2011).
    [CrossRef]
  12. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
    [CrossRef]
  13. F. Lemoult, G. Lerosey, J. Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104, 203901 (2010).
    [CrossRef]
  14. F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
    [CrossRef]
  15. F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2012).
    [CrossRef]
  16. F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves Random Complex Media 21, 591–613 (2011).
    [CrossRef]
  17. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
    [CrossRef]
  18. S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B 80, 245101 (2009).
    [CrossRef]
  19. O. Luukkonen, C. R. Simovski, A. V. Raisanen, and S. A. Tretyakov, “An efficient and simple analytical model for analysis of propagation properties in impedance waveguides,” IEEE Trans. Microwave Theor. Tech. 56, 1624–1632 (2008).
    [CrossRef]
  20. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, 1984).
  21. P. A. Belov, R. Dubrovka, I. Iorsh, I. Yagupov, and Y. S. Kivshar, “Single-mode subwavelength waveguides with wire metamaterials,” Appl. Phys. Lett. 103, 161103 (2013).
    [CrossRef]
  22. M. Silveirinha, C. A. Fernandes, and J. R. Costa, “Superlens made of a metamaterial with extreme effective parameters,” Phys. Rev. B 78, 195121 (2008).
    [CrossRef]
  23. A. N. Kondratenko, Plasma Waveguides (Atomizdat, 1976).
  24. M. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54, 1766–1780 (2006).
    [CrossRef]
  25. A. E. Ageyskiy, S. Y. Kosulnikov, and P. A. Belov, “Resonant excitation of evanescent spatial harmonics in medium formed by parallel metallic nanorods,” Opt. Spectrosc. 110, 572–585 (2011).
    [CrossRef]
  26. A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
    [CrossRef]

2013 (2)

2012 (4)

A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
[CrossRef]

C. R. Simovsky, P. A. Belov, A. V. Atrashenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4221–4342 (2012).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[CrossRef]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2012).
[CrossRef]

2011 (3)

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves Random Complex Media 21, 591–613 (2011).
[CrossRef]

E. K. Stone and E. Hendry, “Dispersion of spoof surface plasmons in open-ended metallic hole arrays,” Phys. Rev. B 84, 035418 (2011).
[CrossRef]

A. E. Ageyskiy, S. Y. Kosulnikov, and P. A. Belov, “Resonant excitation of evanescent spatial harmonics in medium formed by parallel metallic nanorods,” Opt. Spectrosc. 110, 572–585 (2011).
[CrossRef]

2010 (3)

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

F. Lemoult, G. Lerosey, J. Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104, 203901 (2010).
[CrossRef]

2009 (2)

2008 (4)

M. Silveirinha, C. A. Fernandes, and J. R. Costa, “Superlens made of a metamaterial with extreme effective parameters,” Phys. Rev. B 78, 195121 (2008).
[CrossRef]

O. Luukkonen, C. R. Simovski, A. V. Raisanen, and S. A. Tretyakov, “An efficient and simple analytical model for analysis of propagation properties in impedance waveguides,” IEEE Trans. Microwave Theor. Tech. 56, 1624–1632 (2008).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

2007 (1)

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

2006 (3)

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

M. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54, 1766–1780 (2006).
[CrossRef]

2005 (1)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

2003 (1)

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Ageyskiy, A. E.

A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
[CrossRef]

A. E. Ageyskiy, S. Y. Kosulnikov, and P. A. Belov, “Resonant excitation of evanescent spatial harmonics in medium formed by parallel metallic nanorods,” Opt. Spectrosc. 110, 572–585 (2011).
[CrossRef]

Agrafiotis, S.

Alexandrov, A. F.

A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, 1984).

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Ankonina, G.

Atrashchenko, A.

Atrashenko, A. V.

C. R. Simovsky, P. A. Belov, A. V. Atrashenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4221–4342 (2012).
[CrossRef]

Bartal, G.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Belov, P. A.

P. Ginzburg, F. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Yu. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21, 14907–14917 (2013).
[CrossRef]

P. A. Belov, R. Dubrovka, I. Iorsh, I. Yagupov, and Y. S. Kivshar, “Single-mode subwavelength waveguides with wire metamaterials,” Appl. Phys. Lett. 103, 161103 (2013).
[CrossRef]

A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
[CrossRef]

C. R. Simovsky, P. A. Belov, A. V. Atrashenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4221–4342 (2012).
[CrossRef]

A. E. Ageyskiy, S. Y. Kosulnikov, and P. A. Belov, “Resonant excitation of evanescent spatial harmonics in medium formed by parallel metallic nanorods,” Opt. Spectrosc. 110, 572–585 (2011).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Beruete, M.

Bogdankevich, L. S.

A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, 1984).

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

Costa, J. R.

M. Silveirinha, C. A. Fernandes, and J. R. Costa, “Superlens made of a metamaterial with extreme effective parameters,” Phys. Rev. B 78, 195121 (2008).
[CrossRef]

Dickson, W.

Dubrovka, R.

P. A. Belov, R. Dubrovka, I. Iorsh, I. Yagupov, and Y. S. Kivshar, “Single-mode subwavelength waveguides with wire metamaterials,” Appl. Phys. Lett. 103, 161103 (2013).
[CrossRef]

Dubrovka, R. F.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

Falcone, F.

Fan, S.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

Fernandes, C. A.

M. Silveirinha, C. A. Fernandes, and J. R. Costa, “Superlens made of a metamaterial with extreme effective parameters,” Phys. Rev. B 78, 195121 (2008).
[CrossRef]

Fink, M.

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[CrossRef]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2012).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves Random Complex Media 21, 591–613 (2011).
[CrossRef]

F. Lemoult, G. Lerosey, J. Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104, 203901 (2010).
[CrossRef]

Garcia-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Ginzburg, P.

Hao, Y.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Hendry, E.

E. K. Stone and E. Hendry, “Dispersion of spoof surface plasmons in open-ended metallic hole arrays,” Phys. Rev. B 84, 035418 (2011).
[CrossRef]

Ikonen, P.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Iorsh, I.

Kaina, N.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2012).
[CrossRef]

Kivshar, Y. S.

P. A. Belov, R. Dubrovka, I. Iorsh, I. Yagupov, and Y. S. Kivshar, “Single-mode subwavelength waveguides with wire metamaterials,” Appl. Phys. Lett. 103, 161103 (2013).
[CrossRef]

A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
[CrossRef]

Kivshar, Yu. S.

Kondratenko, A. N.

A. N. Kondratenko, Plasma Waveguides (Atomizdat, 1976).

Kosulnikov, S. Y.

A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
[CrossRef]

A. E. Ageyskiy, S. Y. Kosulnikov, and P. A. Belov, “Resonant excitation of evanescent spatial harmonics in medium formed by parallel metallic nanorods,” Opt. Spectrosc. 110, 572–585 (2011).
[CrossRef]

Lemoult, F.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2012).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves Random Complex Media 21, 591–613 (2011).
[CrossRef]

F. Lemoult, G. Lerosey, J. Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104, 203901 (2010).
[CrossRef]

Lerosey, G.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2012).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[CrossRef]

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves Random Complex Media 21, 591–613 (2011).
[CrossRef]

F. Lemoult, G. Lerosey, J. Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104, 203901 (2010).
[CrossRef]

Liu, Yo.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Liu, Zh.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Luukkonen, O.

O. Luukkonen, C. R. Simovski, A. V. Raisanen, and S. A. Tretyakov, “An efficient and simple analytical model for analysis of propagation properties in impedance waveguides,” IEEE Trans. Microwave Theor. Tech. 56, 1624–1632 (2008).
[CrossRef]

Maier, S. A.

M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Marques, R.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

Maslovski, S. I.

A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
[CrossRef]

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B 80, 245101 (2009).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Morgan, F.

Murphy, A.

Navarro-Cia, M.

Nefedov, I. S.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Nevet, A.

Orenstein, M.

Palikaras, G.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

Palikaras, G. K.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

Parini, C.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Parini, C. G.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

Pollard, R. J.

Rahman, A.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

Raisanen, A. V.

O. Luukkonen, C. R. Simovski, A. V. Raisanen, and S. A. Tretyakov, “An efficient and simple analytical model for analysis of propagation properties in impedance waveguides,” IEEE Trans. Microwave Theor. Tech. 56, 1624–1632 (2008).
[CrossRef]

Rodríguez Fortuño, F.

Rosny, J.

F. Lemoult, G. Lerosey, J. Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104, 203901 (2010).
[CrossRef]

Rukhadze, A. A.

A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, 1984).

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

Silveirinha, M.

M. Silveirinha, C. A. Fernandes, and J. R. Costa, “Superlens made of a metamaterial with extreme effective parameters,” Phys. Rev. B 78, 195121 (2008).
[CrossRef]

M. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54, 1766–1780 (2006).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Silveirinha, M. G.

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B 80, 245101 (2009).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

Simovski, C. R.

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

O. Luukkonen, C. R. Simovski, A. V. Raisanen, and S. A. Tretyakov, “An efficient and simple analytical model for analysis of propagation properties in impedance waveguides,” IEEE Trans. Microwave Theor. Tech. 56, 1624–1632 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Simovsky, C. R.

C. R. Simovsky, P. A. Belov, A. V. Atrashenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4221–4342 (2012).
[CrossRef]

Sorolla, M.

Stacy, A. M.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Stone, E. K.

E. K. Stone and E. Hendry, “Dispersion of spoof surface plasmons in open-ended metallic hole arrays,” Phys. Rev. B 84, 035418 (2011).
[CrossRef]

Sun, C.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Tretyakov, S. A.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

O. Luukkonen, C. R. Simovski, A. V. Raisanen, and S. A. Tretyakov, “An efficient and simple analytical model for analysis of propagation properties in impedance waveguides,” IEEE Trans. Microwave Theor. Tech. 56, 1624–1632 (2008).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Tse, S.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Wang, Yu.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Wurtz, G. A.

Yagupov, I.

P. A. Belov, R. Dubrovka, I. Iorsh, I. Yagupov, and Y. S. Kivshar, “Single-mode subwavelength waveguides with wire metamaterials,” Appl. Phys. Lett. 103, 161103 (2013).
[CrossRef]

Yao, J.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Zayats, A. V.

Zhang, X.

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Zhao, Y.

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

Adv. Mater. (1)

C. R. Simovsky, P. A. Belov, A. V. Atrashenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4221–4342 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, “Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with subwavelength resolution,” Appl. Phys. Lett. 97, 191905 (2010).
[CrossRef]

P. A. Belov, R. Dubrovka, I. Iorsh, I. Yagupov, and Y. S. Kivshar, “Single-mode subwavelength waveguides with wire metamaterials,” Appl. Phys. Lett. 103, 161103 (2013).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

M. Silveirinha, “Additional boundary condition for the wire medium,” IEEE Trans. Antennas Propag. 54, 1766–1780 (2006).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

O. Luukkonen, C. R. Simovski, A. V. Raisanen, and S. A. Tretyakov, “An efficient and simple analytical model for analysis of propagation properties in impedance waveguides,” IEEE Trans. Microwave Theor. Tech. 56, 1624–1632 (2008).
[CrossRef]

Nat. Commun. (1)

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 889 (2012).
[CrossRef]

Nat. Phys. (1)

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2012).
[CrossRef]

New J. Phys. (1)

Y. Zhao, G. Palikaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, “Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator,” New J. Phys. 12, 103045 (2010).
[CrossRef]

Opt. Express (2)

Opt. Spectrosc. (1)

A. E. Ageyskiy, S. Y. Kosulnikov, and P. A. Belov, “Resonant excitation of evanescent spatial harmonics in medium formed by parallel metallic nanorods,” Opt. Spectrosc. 110, 572–585 (2011).
[CrossRef]

Phys. Rev. B (7)

A. E. Ageyskiy, S. Y. Kosulnikov, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Quarter-wavelength nanorod lens based on internal imaging,” Phys. Rev. B 85, 033105 (2012).
[CrossRef]

M. Silveirinha, C. A. Fernandes, and J. R. Costa, “Superlens made of a metamaterial with extreme effective parameters,” Phys. Rev. B 78, 195121 (2008).
[CrossRef]

M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Phys. Rev. B 75, 035108 (2007).
[CrossRef]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[CrossRef]

E. K. Stone and E. Hendry, “Dispersion of spoof surface plasmons in open-ended metallic hole arrays,” Phys. Rev. B 84, 035418 (2011).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B 80, 245101 (2009).
[CrossRef]

Phys. Rev. E (1)

P. A. Belov and M. G. Silveirinha, “Resolution of subwavelength transmission devices formed by a wire medium,” Phys. Rev. E 73, 056607 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef]

F. Lemoult, G. Lerosey, J. Rosny, and M. Fink, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104, 203901 (2010).
[CrossRef]

Science (1)

J. Yao, Zh. Liu, Yo. Liu, Yu. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[CrossRef]

Waves Random Complex Media (1)

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves Random Complex Media 21, 591–613 (2011).
[CrossRef]

Other (2)

A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, 1984).

A. N. Kondratenko, Plasma Waveguides (Atomizdat, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics