R. R. A. Syms and R. G. Peall, “Mode confinement and modal overlap in electro-optic channel waveguide devices,” Opt. Commun. 74, 46–48 (1989).

[CrossRef]

A. Vatarescu, “Light conversion in nonlinear monomode optical fibers,” J. Lightwave Technol. 5, 1652–1659 (1987).

[CrossRef]

E. Marcatili, “Improved coupled-mode equations for dielectric guides,” IEEE J. Quantum Electron. 22, 988–993 (1986).Two sets of wave equations are mixed up to generate an “interaction” between the guided modes of the individual waveguides. One set of equations involves the normal, even and odd, modes of the coupler, and the other set involves the modes of the individual waveguides. But no physical effect underpins this mathematical technique. Equally, the incoming guided mode of one waveguide is instantly converted, at the input to the coupler, into a superposition of the normal modes. But no explanation is provided as to how the propagation constant of the incoming photons is converted into the propagation constants of the normal modes.

[CrossRef]

E. A. J. Marcatili, L. L. Buhl, and R. C. Alferness, “Experimental verification of the improved coupled-mode equations,” Appl. Phys. Lett. 49, 1692–1694 (1986).

[CrossRef]

A. Vatarescu, “Intensity discrimination through nonlinear power coupling in birefringent fibers,” Appl. Phys. Lett. 49, 61–63 (1986).

[CrossRef]

A. Vatarescu, “Nonperiodic power coupling in highly birefringent nonlinear optical fibers,” Appl. Phys. Lett. 49, 1409–1411 (1986).

[CrossRef]

E. A. J. Marcatili, L. L. Buhl, and R. C. Alferness, “Experimental verification of the improved coupled-mode equations,” Appl. Phys. Lett. 49, 1692–1694 (1986).

[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic, 1992).

E. A. J. Marcatili, L. L. Buhl, and R. C. Alferness, “Experimental verification of the improved coupled-mode equations,” Appl. Phys. Lett. 49, 1692–1694 (1986).

[CrossRef]

Q. Yishen, L. Denfeng, L. Gaoming, and L. Denfeng, “Rigorous vectorial coupled-mode theory for the isotropic waveguide with anisotropic disturbance,” J. Opt. Soc. Am. B 23, 120–125 (2006).

[CrossRef]

Q. Yishen, L. Denfeng, L. Gaoming, and L. Denfeng, “Rigorous vectorial coupled-mode theory for the isotropic waveguide with anisotropic disturbance,” J. Opt. Soc. Am. B 23, 120–125 (2006).

[CrossRef]

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

E. Marcatili, “Improved coupled-mode equations for dielectric guides,” IEEE J. Quantum Electron. 22, 988–993 (1986).Two sets of wave equations are mixed up to generate an “interaction” between the guided modes of the individual waveguides. One set of equations involves the normal, even and odd, modes of the coupler, and the other set involves the modes of the individual waveguides. But no physical effect underpins this mathematical technique. Equally, the incoming guided mode of one waveguide is instantly converted, at the input to the coupler, into a superposition of the normal modes. But no explanation is provided as to how the propagation constant of the incoming photons is converted into the propagation constants of the normal modes.

[CrossRef]

E. A. J. Marcatili, L. L. Buhl, and R. C. Alferness, “Experimental verification of the improved coupled-mode equations,” Appl. Phys. Lett. 49, 1692–1694 (1986).

[CrossRef]

D. Marcuse, Principles of Quantum Electronics (Academic, 1980).

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2008). http://www.ece.rutgers.edu/~orfanidi/ewa

R. R. A. Syms and R. G. Peall, “Mode confinement and modal overlap in electro-optic channel waveguide devices,” Opt. Commun. 74, 46–48 (1989).

[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

R. R. A. Syms and R. G. Peall, “Mode confinement and modal overlap in electro-optic channel waveguide devices,” Opt. Commun. 74, 46–48 (1989).

[CrossRef]

C. L. Tang, “Spontaneous and stimulated parametric processes,” in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, 1975), p. 419.

A. Vatarescu, “Light conversion in nonlinear monomode optical fibers,” J. Lightwave Technol. 5, 1652–1659 (1987).

[CrossRef]

A. Vatarescu, “Intensity discrimination through nonlinear power coupling in birefringent fibers,” Appl. Phys. Lett. 49, 61–63 (1986).

[CrossRef]

A. Vatarescu, “Nonperiodic power coupling in highly birefringent nonlinear optical fibers,” Appl. Phys. Lett. 49, 1409–1411 (1986).

[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

E. A. J. Marcatili, L. L. Buhl, and R. C. Alferness, “Experimental verification of the improved coupled-mode equations,” Appl. Phys. Lett. 49, 1692–1694 (1986).

[CrossRef]

A. Vatarescu, “Intensity discrimination through nonlinear power coupling in birefringent fibers,” Appl. Phys. Lett. 49, 61–63 (1986).

[CrossRef]

A. Vatarescu, “Nonperiodic power coupling in highly birefringent nonlinear optical fibers,” Appl. Phys. Lett. 49, 1409–1411 (1986).

[CrossRef]

E. Marcatili, “Improved coupled-mode equations for dielectric guides,” IEEE J. Quantum Electron. 22, 988–993 (1986).Two sets of wave equations are mixed up to generate an “interaction” between the guided modes of the individual waveguides. One set of equations involves the normal, even and odd, modes of the coupler, and the other set involves the modes of the individual waveguides. But no physical effect underpins this mathematical technique. Equally, the incoming guided mode of one waveguide is instantly converted, at the input to the coupler, into a superposition of the normal modes. But no explanation is provided as to how the propagation constant of the incoming photons is converted into the propagation constants of the normal modes.

[CrossRef]

A. Vatarescu, “Light conversion in nonlinear monomode optical fibers,” J. Lightwave Technol. 5, 1652–1659 (1987).

[CrossRef]

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Lightwave Technol. 31, 1170–1177 (2013).

[CrossRef]

R. R. A. Syms and R. G. Peall, “Mode confinement and modal overlap in electro-optic channel waveguide devices,” Opt. Commun. 74, 46–48 (1989).

[CrossRef]

T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, “Experimental study on stimulated Rayleigh scattering in optical fibers,” Opt. Express 18, 22958 (2010).

[CrossRef]

W. P. Huang and J. Mu, “Complex coupled-mode theory for optical waveguides,” Opt. Express 17, 19134–19152 (2009).

[CrossRef]

D. Marcuse, Principles of Quantum Electronics (Academic, 1980).

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

C. L. Tang, “Spontaneous and stimulated parametric processes,” in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, 1975), p. 419.

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2008). http://www.ece.rutgers.edu/~orfanidi/ewa