Abstract

The structural symmetry required for long-range surface-plasmon-polariton modes to take place is examined and mapped to asymmetric plasmonic structures. This study leads to a design methodology that facilitates the realization through systematic design of long-range modes in any asymmetric hybrid plasmonic waveguide (AHPW). Examining the modal behavior of an AHPW reveals that field symmetry on either side of the metal is the only necessary condition for plasmonic structures to support long-range propagation. We report that this field symmetry condition can be satisfied irrespective of asymmetry in a waveguide structure, material, or even field profile. The structure is analyzed using the coupled mode theory, transfer matrix method, and finite-difference time-domain method. The AHPW supports high-loss antisymmetric and long-range symmetric supermodes. Dispersion of these supermodes with respect to waveguide dimensions display similar anticrossing characteristics to those obtained in two coupled harmonic oscillators, where the propagation losses display peaks and troughs in the vicinity of the anticrossing region. To place the work in perspective, an AHPW with a width of 200 nm was found to support a long-range supermode with a subwavelength mode area of 0.23μm2 and propagation loss of 0.025dB·μm1 at the wavelength of 1550 nm, providing a radically improved attenuation confinement trade-off compared with other common types of plasmonic waveguides.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons: On Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. A. Dereux, T. W. Ebbesen, and W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  3. S. I. Bozhevolnyi and D. K. Gramotnev, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  4. W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).
  5. M. I. Stockman, “Nanoplasmonics: past present and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [CrossRef]
  6. G. Sun and J. B. Khurgin, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100, 011105 (2012).
    [CrossRef]
  7. P. Berini, “Plasmon-polariton waves guided by thin lossy metal film of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  8. H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  9. J. S. Aitchison, M. Mojahedi, M. Z. Alam, and J. Meier, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, May2007, paper JThD112.
  10. R. Adato and J. Guo, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
    [CrossRef]
  11. G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).
  12. R. Haupt and L. Wendler, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
    [CrossRef]
  13. P. Berini, “Plasmon-polariton waves guides by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  14. N. Lahoud, G. Mattiussi, P. Berini, and R. Charbonneau, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
    [CrossRef]
  15. P. Berini and I. Breukelaari, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971–1977 (2006).
    [CrossRef]
  16. A. S. Helmy and W. Ma, “Waveguiding in asymmetric hybrid plasmonic structures,” in IEEE Photonics Conference, Seattle, 2013.
  17. H. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  18. L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78, 1199–1202 (2010).
    [CrossRef]
  19. D. Feng, S. Tanev, V. P. Tzolov, C. Chen, and P. Berini, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7, 260–272 (2000).
    [CrossRef]
  20. S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 14, 1089–1091 (1987).
  21. P. Berini and R. Buckley, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
    [CrossRef]

2012

G. Sun and J. B. Khurgin, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100, 011105 (2012).
[CrossRef]

2011

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

M. I. Stockman, “Nanoplasmonics: past present and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[CrossRef]

2010

S. I. Bozhevolnyi and D. K. Gramotnev, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78, 1199–1202 (2010).
[CrossRef]

2007

2006

2005

N. Lahoud, G. Mattiussi, P. Berini, and R. Charbonneau, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

2003

A. Dereux, T. W. Ebbesen, and W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

2001

P. Berini, “Plasmon-polariton waves guides by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

2000

D. Feng, S. Tanev, V. P. Tzolov, C. Chen, and P. Berini, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7, 260–272 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal film of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

1987

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 14, 1089–1091 (1987).

1986

R. Haupt and L. Wendler, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

Adato, R.

Aitchison, J. S.

J. S. Aitchison, M. Mojahedi, M. Z. Alam, and J. Meier, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, May2007, paper JThD112.

Alam, M. Z.

J. S. Aitchison, M. Mojahedi, M. Z. Alam, and J. Meier, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, May2007, paper JThD112.

Aussenegg, F. R.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Barnard, E. S.

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

Barnes, W. L.

A. Dereux, T. W. Ebbesen, and W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Berini, P.

P. Berini and R. Buckley, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[CrossRef]

P. Berini and I. Breukelaari, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971–1977 (2006).
[CrossRef]

N. Lahoud, G. Mattiussi, P. Berini, and R. Charbonneau, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

P. Berini, “Plasmon-polariton waves guides by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal film of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

D. Feng, S. Tanev, V. P. Tzolov, C. Chen, and P. Berini, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7, 260–272 (2000).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and D. K. Gramotnev, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Breukelaari, I.

Brongersma, M. L.

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

Buckley, R.

Cai, W. S.

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

Charbonneau, R.

N. Lahoud, G. Mattiussi, P. Berini, and R. Charbonneau, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

Chen, C.

Chen, L.

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

Chen, S.

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

Chuang, S. L.

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 14, 1089–1091 (1987).

Dereux, A.

A. Dereux, T. W. Ebbesen, and W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Drezet, A.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Ebbesen, T. W.

A. Dereux, T. W. Ebbesen, and W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Feng, D.

Gao, D.

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

Gramotnev, D. K.

S. I. Bozhevolnyi and D. K. Gramotnev, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Guo, J.

Haupt, R.

R. Haupt and L. Wendler, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

Helmy, A. S.

A. S. Helmy and W. Ma, “Waveguiding in asymmetric hybrid plasmonic structures,” in IEEE Photonics Conference, Seattle, 2013.

Hohenau, A.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Jun, Y. C.

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

Khurgin, J. B.

G. Sun and J. B. Khurgin, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100, 011105 (2012).
[CrossRef]

Krenn, J. R.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Lahoud, N.

N. Lahoud, G. Mattiussi, P. Berini, and R. Charbonneau, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

Leitner, A.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Li, W.

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

Li, X.

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

Ma, W.

A. S. Helmy and W. Ma, “Waveguiding in asymmetric hybrid plasmonic structures,” in IEEE Photonics Conference, Seattle, 2013.

Mattiussi, G.

N. Lahoud, G. Mattiussi, P. Berini, and R. Charbonneau, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

Meier, J.

J. S. Aitchison, M. Mojahedi, M. Z. Alam, and J. Meier, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, May2007, paper JThD112.

Mojahedi, M.

J. S. Aitchison, M. Mojahedi, M. Z. Alam, and J. Meier, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, May2007, paper JThD112.

Novotny, L.

L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78, 1199–1202 (2010).
[CrossRef]

Palik, H. D.

H. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Raether, H.

H. Raether, Surface Plasmons: On Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Schuller, J. A.

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

Steinberger, B.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stepanov, A. L.

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stockman, M. I.

Sun, G.

G. Sun and J. B. Khurgin, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100, 011105 (2012).
[CrossRef]

Tanev, S.

Tzolov, V. P.

Wang, G.

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

Wendler, L.

R. Haupt and L. Wendler, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

White, J. S.

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

Xiao, L.

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

Am. J. Phys.

L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78, 1199–1202 (2010).
[CrossRef]

Appl. Phys. Lett.

G. Sun and J. B. Khurgin, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100, 011105 (2012).
[CrossRef]

H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, B. Steinberger, and A. Hohenau, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

J. Appl. Phys.

R. Haupt and L. Wendler, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

N. Lahoud, G. Mattiussi, P. Berini, and R. Charbonneau, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

J. Lightwave Technol.

S. L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 14, 1089–1091 (1987).

G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, L. Chen, and X. Li, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 5, 10742–10748 (2011).

J. Opt. Soc. Am. A

Nat. Mater.

W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, J. A. Schuller, and E. S. Barnard, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 25729–25740 (2010).

Nat. Photonics

S. I. Bozhevolnyi and D. K. Gramotnev, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature

A. Dereux, T. W. Ebbesen, and W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express

Phys. Rev. B

P. Berini, “Plasmon-polariton waves guides by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal film of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Other

J. S. Aitchison, M. Mojahedi, M. Z. Alam, and J. Meier, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, May2007, paper JThD112.

H. Raether, Surface Plasmons: On Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

A. S. Helmy and W. Ma, “Waveguiding in asymmetric hybrid plasmonic structures,” in IEEE Photonics Conference, Seattle, 2013.

H. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematics of the asymmetric hybrid plasmonic waveguide. When the metal film with ϵ4 is sufficiently thick, the system can be seen as two decoupled hybrid plasmonic waveguides, HPW1 and HPW2.

Fig. 2.
Fig. 2.

(a) Effective mode index and (b) propagation loss of the AHPW, HPW1, and HPW2 with respect to the ϵ2 Si layer thickness. The TE mode can become cut off at the dimension predetermined by the configuration of the vertical structure. Below this dimension the waveguide supports only the TM mode.

Fig. 3.
Fig. 3.

Vertical transverse field profiles of the [(a)–(c)] antisymmetric supermode and the [(d)–(f)] symmetric supermode with increasing ϵ2, which is the top Si layer thickness.

Fig. 4.
Fig. 4.

Real components of the complex coupling coefficient with respect to the ϵ2 Si layer thickness for HPW1 (κ12) and HPW2 (κ21) for the TE and TM modes.

Fig. 5.
Fig. 5.

Dispersion of the TM modes with respect to the metal layer thickness for an Si (ϵ2) thickness of 192, 177, and 162 nm.

Fig. 6.
Fig. 6.

(a) Effective mode index. (b) Propagation loss. (c) Mode area of guided modes in a 2D AHPW with respect to the waveguide width.

Fig. 7.
Fig. 7.

(a) Effective index. (b) Propagation loss. (c) Mode area. (d) Beating length of the TM antisymmetric and symmetric modes for 2D waveguides with a width of 200 nm as a function of the Si ϵ2 layer thickness.

Fig. 8.
Fig. 8.

(a) Effective mode index. (b) Propagation loss. (c) Mode area of guided modes in a 2D waveguide with respect to wavelength. Waveguide width is 200 nm. ϵ2 Si layer thickness is 210 nm.

Fig. 9.
Fig. 9.

Electric field profile of the following waveguides: (a) LRSPP plasmonic strip waveguide with a 20nm×775nm Al strip embedded in Si. (b) Al plasmonic slot waveguide embedded in homogeneous SiO2 with slot size of 500nm×220nm. (c) Hybrid plasmonic waveguide consists of 200nm×250nm SiO2 sandwiched between 242.5 nm Si and Al film. The cladding is taken as air. (d) Symmetric hybrid plasmonic strip waveguide based on the proposed structure by [11]. From top to bottom, the structure has the following dimensions: 800 nm SiO2, 220 nm Si, 40 nm SiO2, 20 nm Al, 40 nm SiO2, 220 nm Si, and 800 nm SiO2. (e) AHPW with a width of 200 nm and (ϵ2) Si layer thickness of 210 nm.

Tables (1)

Tables Icon

Table 1. Comparison of Modal Properties between Designs in This Work and Previous Approachesa

Metrics