Abstract

We report a numerical study on the optical tuning of a notch filter comprised of an array of engineered graphene microribbons. The notch on the normal incidence transmission spectra is created due to light–plasmon coupling in graphene. Besides investigating the effect of structural parameters and electrostatic gating on the graphene plasmon excitation, we particularly examine the modulation of transmission with incident light intensity based on the significant optical Kerr effect in graphene. Our numerical simulation with the finite difference time domain numerical method reveals that considerable variation in the transmission up to 12.15 dB can be effectively achieved by increasing the irradiance intensity up to 0.68  MW/cm2, which is adequately below the graphene threshold damage. The presence of well-known techniques to fabricate and characterize graphene sheets such as chemical vapor deposition and Raman spectroscopy makes such a one-atom-thick terahertz filter feasible.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [CrossRef]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [CrossRef]
  3. F. H. L. Koppens, D. E. Chang, and F. J. G. Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [CrossRef]
  4. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [CrossRef]
  5. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [CrossRef]
  6. J. S. G. Diaz and J. P. Carrier, “Graphene based plasmonic switches at near infrared frequencies,” Opt. Express 21, 15490–15504 (2013).
    [CrossRef]
  7. P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
    [CrossRef]
  8. G. W. Hanson, “Dyadic Green’s function for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag. 54, 3677–3685 (2006).
    [CrossRef]
  9. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
    [CrossRef]
  10. P. N. Incze, Z. Osvath, K. Kamaras, and L. P. Biro, “Anomalies in thickness measurement of graphene and few layer graphite crystals by tapping mode atomic microscopy,” Carbon 46, 1435–1442 (2008).
    [CrossRef]
  11. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
    [CrossRef]
  12. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  13. P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
    [CrossRef]
  14. A. Vakil and N. Engheta, “Fourier optics on graphene,” Phys. Rev. B 85, 075434 (2012).
    [CrossRef]
  15. S. Pisana, P. M. Braganca, E. E. Marinero, and B. A. Gurney, “Graphene magnetic field sensors,” IEEE Trans. Magn. 46, 1910–1913 (2010).
    [CrossRef]
  16. N. Chamanara, D. Sounas, and C. Caloz, “Non-reciprocal magnetoplasmon graphene coupler,” Opt. Express 21, 11248–11256 (2013).
    [CrossRef]
  17. S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20, 384204 (2008).
    [CrossRef]
  18. A. Wright, X. Xu, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
    [CrossRef]
  19. K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402(R) (2010).
    [CrossRef]
  20. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
    [CrossRef]
  21. H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
    [CrossRef]
  22. C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37, 3345–3347 (2012).
    [CrossRef]
  23. A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
    [CrossRef]
  24. J. S. G. Diaz and J. P. Carrier, “Propagation of hybrid transverse magnetic–transverse electric plasmons on magnetically biased graphene sheet,” J. Appl. Phys. 112, 124906 (2012).
    [CrossRef]
  25. V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two dimensional electron-hole system in gated graphene hetrostructure,” J. Appl. Phys. 101, 024509 (2007).
    [CrossRef]
  26. L. A. Falkovsky, “Unusual field and temperature dependence of the Hall effect in graphene,” Phys. Rev. B. 75, 033409 (2007).
    [CrossRef]
  27. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
    [CrossRef]
  28. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [CrossRef]
  29. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
    [CrossRef]
  30. G. D. Bouzianas, N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, “Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes,” IEEE Trans. Magn. 48, 379–382 (2012).
    [CrossRef]
  31. A. Toflaove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time -Domain Method, 3rd ed. (Artech House, 2005).
  32. D. C. Serrano, J. S. G. Diaz, J. P. Carrier, and A. A. Melcon, “Graphene based plasmonic tunable low pass filters in the terahertz band,” arXiv:1304.6320 (2013).
  33. M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, “Graphene-based tunable terahertz and infrared band-pass filter,” Appl. Opt. 52, L68–L72 (2013).
    [CrossRef]
  34. A. V. Gorbach, “Nonlinear graphene plasmonics: amplitude equation for surface plasmons,” Phys. Rev. A 87, 013830 (2013).
    [CrossRef]
  35. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008).
    [CrossRef]
  36. M. Currie, J. D. Caldwell, F. J. Bezares, and J. Robinson, “Quantifying pulse laser induced damage to graphene,” Appl. Phys. Lett. 99, 211909 (2011).
    [CrossRef]
  37. B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
    [CrossRef]
  38. A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
    [CrossRef]

2013

M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, “Graphene-based tunable terahertz and infrared band-pass filter,” Appl. Opt. 52, L68–L72 (2013).
[CrossRef]

A. V. Gorbach, “Nonlinear graphene plasmonics: amplitude equation for surface plasmons,” Phys. Rev. A 87, 013830 (2013).
[CrossRef]

N. Chamanara, D. Sounas, and C. Caloz, “Non-reciprocal magnetoplasmon graphene coupler,” Opt. Express 21, 11248–11256 (2013).
[CrossRef]

J. S. G. Diaz and J. P. Carrier, “Graphene based plasmonic switches at near infrared frequencies,” Opt. Express 21, 15490–15504 (2013).
[CrossRef]

2012

H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).
[CrossRef]

C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic metamaterials,” Opt. Lett. 37, 3345–3347 (2012).
[CrossRef]

G. D. Bouzianas, N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, “Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes,” IEEE Trans. Magn. 48, 379–382 (2012).
[CrossRef]

J. S. G. Diaz and J. P. Carrier, “Propagation of hybrid transverse magnetic–transverse electric plasmons on magnetically biased graphene sheet,” J. Appl. Phys. 112, 124906 (2012).
[CrossRef]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[CrossRef]

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

A. Vakil and N. Engheta, “Fourier optics on graphene,” Phys. Rev. B 85, 075434 (2012).
[CrossRef]

2011

F. H. L. Koppens, D. E. Chang, and F. J. G. Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

M. Currie, J. D. Caldwell, F. J. Bezares, and J. Robinson, “Quantifying pulse laser induced damage to graphene,” Appl. Phys. Lett. 99, 211909 (2011).
[CrossRef]

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

2010

K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402(R) (2010).
[CrossRef]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

S. Pisana, P. M. Braganca, E. E. Marinero, and B. A. Gurney, “Graphene magnetic field sensors,” IEEE Trans. Magn. 46, 1910–1913 (2010).
[CrossRef]

2009

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

A. Wright, X. Xu, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[CrossRef]

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

2008

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008).
[CrossRef]

P. N. Incze, Z. Osvath, K. Kamaras, and L. P. Biro, “Anomalies in thickness measurement of graphene and few layer graphite crystals by tapping mode atomic microscopy,” Carbon 46, 1435–1442 (2008).
[CrossRef]

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20, 384204 (2008).
[CrossRef]

2007

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two dimensional electron-hole system in gated graphene hetrostructure,” J. Appl. Phys. 101, 024509 (2007).
[CrossRef]

L. A. Falkovsky, “Unusual field and temperature dependence of the Hall effect in graphene,” Phys. Rev. B. 75, 033409 (2007).
[CrossRef]

2006

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

G. W. Hanson, “Dyadic Green’s function for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag. 54, 3677–3685 (2006).
[CrossRef]

2005

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

2004

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Abajo, F. J. G.

F. H. L. Koppens, D. E. Chang, and F. J. G. Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef]

Abram, R. A.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Ahn, J. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Alu, A.

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Antonopoulos, C. S.

G. D. Bouzianas, N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, “Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes,” IEEE Trans. Magn. 48, 379–382 (2012).
[CrossRef]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Bao, Q.

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Bezares, F. J.

M. Currie, J. D. Caldwell, F. J. Bezares, and J. Robinson, “Quantifying pulse laser induced damage to graphene,” Appl. Phys. Lett. 99, 211909 (2011).
[CrossRef]

Biro, L. P.

P. N. Incze, Z. Osvath, K. Kamaras, and L. P. Biro, “Anomalies in thickness measurement of graphene and few layer graphite crystals by tapping mode atomic microscopy,” Carbon 46, 1435–1442 (2008).
[CrossRef]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Bouzianas, G. D.

G. D. Bouzianas, N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, “Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes,” IEEE Trans. Magn. 48, 379–382 (2012).
[CrossRef]

Braganca, P. M.

S. Pisana, P. M. Braganca, E. E. Marinero, and B. A. Gurney, “Graphene magnetic field sensors,” IEEE Trans. Magn. 46, 1910–1913 (2010).
[CrossRef]

Brand, S.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Brodyanski, A.

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Caldwell, J. D.

M. Currie, J. D. Caldwell, F. J. Bezares, and J. Robinson, “Quantifying pulse laser induced damage to graphene,” Appl. Phys. Lett. 99, 211909 (2011).
[CrossRef]

Caloz, C.

Carrier, J. P.

J. S. G. Diaz and J. P. Carrier, “Graphene based plasmonic switches at near infrared frequencies,” Opt. Express 21, 15490–15504 (2013).
[CrossRef]

J. S. G. Diaz and J. P. Carrier, “Propagation of hybrid transverse magnetic–transverse electric plasmons on magnetically biased graphene sheet,” J. Appl. Phys. 112, 124906 (2012).
[CrossRef]

D. C. Serrano, J. S. G. Diaz, J. P. Carrier, and A. A. Melcon, “Graphene based plasmonic tunable low pass filters in the terahertz band,” arXiv:1304.6320 (2013).

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Chae, D. H.

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

Chamanara, N.

Chanberlain, J. M.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. G. Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef]

Chen, C.

Chen, P. Y.

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef]

Choi, J. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Ciattoni, A.

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Columbo, L.

Cormode, D.

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

Currie, M.

M. Currie, J. D. Caldwell, F. J. Bezares, and J. Robinson, “Quantifying pulse laser induced damage to graphene,” Appl. Phys. Lett. 99, 211909 (2011).
[CrossRef]

Danaeifar, M.

M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, “Graphene-based tunable terahertz and infrared band-pass filter,” Appl. Opt. 52, L68–L72 (2013).
[CrossRef]

Deng, Y.

Diaz, J. S. G.

J. S. G. Diaz and J. P. Carrier, “Graphene based plasmonic switches at near infrared frequencies,” Opt. Express 21, 15490–15504 (2013).
[CrossRef]

J. S. G. Diaz and J. P. Carrier, “Propagation of hybrid transverse magnetic–transverse electric plasmons on magnetically biased graphene sheet,” J. Appl. Phys. 112, 124906 (2012).
[CrossRef]

D. C. Serrano, J. S. G. Diaz, J. P. Carrier, and A. A. Melcon, “Graphene based plasmonic tunable low pass filters in the terahertz band,” arXiv:1304.6320 (2013).

Dubones, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Engheta, N.

A. Vakil and N. Engheta, “Fourier optics on graphene,” Phys. Rev. B 85, 075434 (2012).
[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

Falkovsky, L. A.

L. A. Falkovsky, “Unusual field and temperature dependence of the Hall effect in graphene,” Phys. Rev. B. 75, 033409 (2007).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Firsove, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Gallant, A. J.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Godbout, N.

Gorbach, A. V.

A. V. Gorbach, “Nonlinear graphene plasmonics: amplitude equation for surface plasmons,” Phys. Rev. A 87, 013830 (2013).
[CrossRef]

Granpayeh, N.

M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, “Graphene-based tunable terahertz and infrared band-pass filter,” Appl. Opt. 52, L68–L72 (2013).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Gurney, B. A.

S. Pisana, P. M. Braganca, E. E. Marinero, and B. A. Gurney, “Graphene magnetic field sensors,” IEEE Trans. Magn. 46, 1910–1913 (2010).
[CrossRef]

Hagness, S. C.

A. Toflaove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time -Domain Method, 3rd ed. (Artech House, 2005).

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Haluska, M.

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s function for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag. 54, 3677–3685 (2006).
[CrossRef]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Hoh, M.

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

Hong, B. H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Illige, T. N.

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

Incze, P. N.

P. N. Incze, Z. Osvath, K. Kamaras, and L. P. Biro, “Anomalies in thickness measurement of graphene and few layer graphite crystals by tapping mode atomic microscopy,” Carbon 46, 1435–1442 (2008).
[CrossRef]

Ishikawa, K. L.

K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402(R) (2010).
[CrossRef]

Jang, H.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Kaliteevski, M. A.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Kamaras, K.

P. N. Incze, Z. Osvath, K. Kamaras, and L. P. Biro, “Anomalies in thickness measurement of graphene and few layer graphite crystals by tapping mode atomic microscopy,” Carbon 46, 1435–1442 (2008).
[CrossRef]

Kantartzis, N. V.

G. D. Bouzianas, N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, “Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes,” IEEE Trans. Magn. 48, 379–382 (2012).
[CrossRef]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Kim, J. M.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Kim, K. S.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Kim, P.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Klitzing, K. V.

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

Kockaert, P.

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. G. Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef]

Krauss, B.

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Lee, S. Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Leroy, B. J.

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[CrossRef]

Lohmann, T.

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

Lu, Y.

Marinero, E. E.

S. Pisana, P. M. Braganca, E. E. Marinero, and B. A. Gurney, “Graphene magnetic field sensors,” IEEE Trans. Magn. 46, 1910–1913 (2010).
[CrossRef]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Massar, S.

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Melcon, A. A.

D. C. Serrano, J. S. G. Diaz, J. P. Carrier, and A. A. Melcon, “Graphene based plasmonic tunable low pass filters in the terahertz band,” arXiv:1304.6320 (2013).

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20, 384204 (2008).
[CrossRef]

Min, C.

Ming, H.

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Mohammadi, A.

M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, “Graphene-based tunable terahertz and infrared band-pass filter,” Appl. Opt. 52, L68–L72 (2013).
[CrossRef]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Ning, T.

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Osvath, Z.

P. N. Incze, Z. Osvath, K. Kamaras, and L. P. Biro, “Anomalies in thickness measurement of graphene and few layer graphite crystals by tapping mode atomic microscopy,” Carbon 46, 1435–1442 (2008).
[CrossRef]

Otsuji, T.

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two dimensional electron-hole system in gated graphene hetrostructure,” J. Appl. Phys. 101, 024509 (2007).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Petty, M. C.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Ping, L. K.

Pisana, S.

S. Pisana, P. M. Braganca, E. E. Marinero, and B. A. Gurney, “Graphene magnetic field sensors,” IEEE Trans. Magn. 46, 1910–1913 (2010).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Pomar, J. L. G.

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

Rahm, M.

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

Reinhard, B.

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

Reynolds, C.

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

Rizza, C.

Roberts, A.

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

Robinson, J.

M. Currie, J. D. Caldwell, F. J. Bezares, and J. Robinson, “Quantifying pulse laser induced damage to graphene,” Appl. Phys. Lett. 99, 211909 (2011).
[CrossRef]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Ryzhii, V.

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two dimensional electron-hole system in gated graphene hetrostructure,” J. Appl. Phys. 101, 024509 (2007).
[CrossRef]

Sandhu, A.

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

Satou, A.

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two dimensional electron-hole system in gated graphene hetrostructure,” J. Appl. Phys. 101, 024509 (2007).
[CrossRef]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

Serrano, D. C.

D. C. Serrano, J. S. G. Diaz, J. P. Carrier, and A. A. Melcon, “Graphene based plasmonic tunable low pass filters in the terahertz band,” arXiv:1304.6320 (2013).

Setayesh, A.

M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, “Graphene-based tunable terahertz and infrared band-pass filter,” Appl. Opt. 52, L68–L72 (2013).
[CrossRef]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Smet, J. H.

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

Sounas, D.

Spinozzi, E.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Swift, G. P.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Toflaove, A.

A. Toflaove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time -Domain Method, 3rd ed. (Artech House, 2005).

Tsiboukis, T. D.

G. D. Bouzianas, N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, “Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes,” IEEE Trans. Magn. 48, 379–382 (2012).
[CrossRef]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Vakil, A.

A. Vakil and N. Engheta, “Fourier optics on graphene,” Phys. Rev. B 85, 075434 (2012).
[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Virally, S.

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Wang, P.

Weis, P.

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

Wood, D.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Wright, A.

A. Wright, X. Xu, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[CrossRef]

Xu, X.

A. Wright, X. Xu, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[CrossRef]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Yang, G.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Zeze, D. A.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Zhang, C.

A. Wright, X. Xu, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[CrossRef]

Zhang, H.

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

Zhao, Y.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

Zhou, Y.

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20, 384204 (2008).
[CrossRef]

ACS Nano

P. Weis, J. L. G. Pomar, M. Hoh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012).
[CrossRef]

P. Y. Chen and A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5, 5855–5863 (2011).
[CrossRef]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[CrossRef]

Appl. Opt.

M. Danaeifar, N. Granpayeh, A. Mohammadi, and A. Setayesh, “Graphene-based tunable terahertz and infrared band-pass filter,” Appl. Opt. 52, L68–L72 (2013).
[CrossRef]

Appl. Phys. Lett.

M. Currie, J. D. Caldwell, F. J. Bezares, and J. Robinson, “Quantifying pulse laser induced damage to graphene,” Appl. Phys. Lett. 99, 211909 (2011).
[CrossRef]

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chanberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

A. Wright, X. Xu, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
[CrossRef]

A. Roberts, D. Cormode, C. Reynolds, T. N. Illige, B. J. Leroy, and A. Sandhu, “Response of graphene to femtosecond high intensity laser irradiation,” Appl. Phys. Lett. 99, 051912 (2011).
[CrossRef]

Carbon

P. N. Incze, Z. Osvath, K. Kamaras, and L. P. Biro, “Anomalies in thickness measurement of graphene and few layer graphite crystals by tapping mode atomic microscopy,” Carbon 46, 1435–1442 (2008).
[CrossRef]

IEEE Trans. Antennas Propag.

G. W. Hanson, “Dyadic Green’s function for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag. 54, 3677–3685 (2006).
[CrossRef]

IEEE Trans. Magn.

S. Pisana, P. M. Braganca, E. E. Marinero, and B. A. Gurney, “Graphene magnetic field sensors,” IEEE Trans. Magn. 46, 1910–1913 (2010).
[CrossRef]

G. D. Bouzianas, N. V. Kantartzis, C. S. Antonopoulos, and T. D. Tsiboukis, “Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes,” IEEE Trans. Magn. 48, 379–382 (2012).
[CrossRef]

J. Appl. Phys.

J. S. G. Diaz and J. P. Carrier, “Propagation of hybrid transverse magnetic–transverse electric plasmons on magnetically biased graphene sheet,” J. Appl. Phys. 112, 124906 (2012).
[CrossRef]

V. Ryzhii, A. Satou, and T. Otsuji, “Plasma waves in two dimensional electron-hole system in gated graphene hetrostructure,” J. Appl. Phys. 101, 024509 (2007).
[CrossRef]

J. Phys. Condens. Matter

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter 20, 384204 (2008).
[CrossRef]

Nano Lett.

F. H. L. Koppens, D. E. Chang, and F. J. G. Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[CrossRef]

Nat. Nanotechnol.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Nat. Photonics

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

Nature

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsove, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. V. Gorbach, “Nonlinear graphene plasmonics: amplitude equation for surface plasmons,” Phys. Rev. A 87, 013830 (2013).
[CrossRef]

Phys. Rev. B

B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. V. Klitzing, and J. H. Smet, “Laser-induced disassembly of a graphene single crystal in a nano-crystalline network,” Phys. Rev. B 79, 165–428 (2009).
[CrossRef]

K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402(R) (2010).
[CrossRef]

A. Vakil and N. Engheta, “Fourier optics on graphene,” Phys. Rev. B 85, 075434 (2012).
[CrossRef]

Phys. Rev. B.

L. A. Falkovsky, “Unusual field and temperature dependence of the Hall effect in graphene,” Phys. Rev. B. 75, 033409 (2007).
[CrossRef]

Phys. Rev. Lett.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[CrossRef]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
[CrossRef]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubones, I. V. Grigorieva, and A. A. Firsove, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large area synthesis of high quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[CrossRef]

Other

A. Toflaove and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time -Domain Method, 3rd ed. (Artech House, 2005).

D. C. Serrano, J. S. G. Diaz, J. P. Carrier, and A. A. Melcon, “Graphene based plasmonic tunable low pass filters in the terahertz band,” arXiv:1304.6320 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics