Abstract

Graphene-like nanomaterials such as monolayer MoS2 have attracted considerable attention recently. In this article, we propose a nano-optomechanical system based on a suspended monolayer MoS2. The coherent linear and nonlinear optical properties of this system have been investigated theoretically. A scheme for measuring the coupling strength of exciton–nanoresonator and the frequency of the nanoresonator is also demonstrated by the optical pump-probe method. Based on the coherent optical spectrum, we further propose a nonlinear optical scheme to determine the mass of the biomolecules (such as single influenza virus and HIV virus). This scheme proposed here may have potential applications in quantum sensing and all-optical MoS2-based devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
    [CrossRef]
  2. A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
    [CrossRef]
  3. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
    [CrossRef]
  4. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
  5. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
    [CrossRef]
  6. T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).
  7. C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
    [CrossRef]
  8. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).
  9. M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
  10. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
    [CrossRef]
  11. H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, “Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions,” Phys. Rev. Lett. 110, 016806 (2013).
    [CrossRef]
  12. X. Li, F. Zhang, and Q. Niu, “Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer,” Phys. Rev. Lett. 110, 066803 (2013).
    [CrossRef]
  13. Y. Song and H. Dery, “Transport theory of monolayer transition-metal dichalcogenides through symmetry,” Phys. Rev. Lett. 111, 026601 (2013).
    [CrossRef]
  14. K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Lett. 13, 2931–2936 (2013).
  15. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
    [CrossRef]
  16. H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).
  17. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
    [CrossRef]
  18. B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
    [CrossRef]
  19. H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
    [CrossRef]
  20. M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
    [CrossRef]
  21. J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
    [CrossRef]
  22. S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
    [CrossRef]
  23. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
    [CrossRef]
  24. A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
    [CrossRef]
  25. H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
    [CrossRef]
  26. F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).
  27. D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
    [CrossRef]
  28. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2, 114–120 (2007).
    [CrossRef]
  29. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
    [CrossRef]
  30. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
    [CrossRef]
  31. A. Boisen, “Nanoelectromechanical systems: mass spec goes nanomechanical,” Nat. Nanotechnol. 4, 404–405 (2009).
    [CrossRef]
  32. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
    [CrossRef]
  33. K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
    [CrossRef]
  34. J. J. Li and K. D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
    [CrossRef]
  35. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
    [CrossRef]
  36. G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
    [CrossRef]
  37. C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).
  38. A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B 84, 155413 (2011).
  39. C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three-and two-dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).
  40. T. Li, “Ideal strength and phonon instability in single-layer MoS2,” Phys. Rev. B 85, 235407 (2012).
  41. Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).
  42. H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms,” Acoust. Sci. Technol. 30, 348–354 (2009).
  43. G. D. Mahan, Many-Particle Physics (Plenum, 1981).
  44. R. W. Boyd, Nonlinear Optics (Academic, 1992), p. 225.
  45. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
    [CrossRef]
  46. S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [CrossRef]
  47. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).
  48. Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).
  49. K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682 (2004).
    [CrossRef]
  50. J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.
  51. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Phys. Rev. B 85, 115317 (2012).
  52. Y. Ge and A. Y. Liu, “Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction,” Phys. Rev. B 87, 241408(R) (2013).
  53. J. J. Li, C. Jiang, B. Chen, and K. D. Zhu, “Optical mass sensing with a carbon nanotube resonator,” J. Opt. Soc. Am. B 29, 965–969 (2012).
    [CrossRef]
  54. Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
    [CrossRef]
  55. K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
    [CrossRef]
  56. D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Phototermal self-excitation of nanomechanical resonators in liquids,” Appl. Phys. Lett. 92, 173108 (2008).
    [CrossRef]
  57. M. D. Dai, K. Eom, and C. W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett. 95, 203104 (2009).
    [CrossRef]

2014

Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).

2013

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Y. Ge and A. Y. Liu, “Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction,” Phys. Rev. B 87, 241408(R) (2013).

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, “Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions,” Phys. Rev. Lett. 110, 016806 (2013).
[CrossRef]

X. Li, F. Zhang, and Q. Niu, “Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer,” Phys. Rev. Lett. 110, 066803 (2013).
[CrossRef]

Y. Song and H. Dery, “Transport theory of monolayer transition-metal dichalcogenides through symmetry,” Phys. Rev. Lett. 111, 026601 (2013).
[CrossRef]

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Lett. 13, 2931–2936 (2013).

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
[CrossRef]

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
[CrossRef]

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

J. J. Li and K. D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

2012

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
[CrossRef]

T. Li, “Ideal strength and phonon instability in single-layer MoS2,” Phys. Rev. B 85, 235407 (2012).

K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Phys. Rev. B 85, 115317 (2012).

J. J. Li, C. Jiang, B. Chen, and K. D. Zhu, “Optical mass sensing with a carbon nanotube resonator,” J. Opt. Soc. Am. B 29, 965–969 (2012).
[CrossRef]

2011

Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
[CrossRef]

A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B 84, 155413 (2011).

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three-and two-dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[CrossRef]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[CrossRef]

2010

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[CrossRef]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

2009

H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms,” Acoust. Sci. Technol. 30, 348–354 (2009).

M. D. Dai, K. Eom, and C. W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett. 95, 203104 (2009).
[CrossRef]

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[CrossRef]

A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef]

A. Boisen, “Nanoelectromechanical systems: mass spec goes nanomechanical,” Nat. Nanotechnol. 4, 404–405 (2009).
[CrossRef]

2008

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Phototermal self-excitation of nanomechanical resonators in liquids,” Appl. Phys. Lett. 92, 173108 (2008).
[CrossRef]

2007

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2, 114–120 (2007).
[CrossRef]

2006

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).

2005

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

2004

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682 (2004).
[CrossRef]

Acharya, J.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Agraït, N.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

Akturk, E.

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three-and two-dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).

Arcizet, O.

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Ataca, C.

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three-and two-dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).

Bachtold, A.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

Bangert, U.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).

Barbara, P.

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Barkelid, M.

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

Berman, P. R.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Bertolazzi, S.

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[CrossRef]

Boisen, A.

A. Boisen, “Nanoelectromechanical systems: mass spec goes nanomechanical,” Nat. Nanotechnol. 4, 404–405 (2009).
[CrossRef]

Bolotin, K. I.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Boyd, A. K.

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992), p. 225.

Bracker, A. S.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Brivio, J.

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[CrossRef]

B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[CrossRef]

Brus, L. E.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

Burgner, C. B.

K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
[CrossRef]

Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

Buscema, M.

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

Callegari, C.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).

Calleja, M.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Phototermal self-excitation of nanomechanical resonators in liquids,” Appl. Phys. Lett. 92, 173108 (2008).
[CrossRef]

Campbell, P. M.

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

Castellanos-Gomez, A.

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

Castro, A. H.

A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Ceballos, G.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

Chang, Y.-G.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Charles, D.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Chaste, J.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

Chen, B.

Chen, C.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

Chhowalla, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).

Ciraci, S.

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three-and two-dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).

Cobas, E.

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

Cui, X.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
[CrossRef]

Currie, M.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

Dai, J.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
[CrossRef]

Dai, M. D.

M. D. Dai, K. Eom, and C. W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett. 95, 203104 (2009).
[CrossRef]

Deleglise, S.

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Deppe, T.

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Dery, H.

Y. Song and H. Dery, “Transport theory of monolayer transition-metal dichalcogenides through symmetry,” Phys. Rev. Lett. 111, 026601 (2013).
[CrossRef]

Dravid, V. P.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Eda, G.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).

Eichler, A.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

Ekinci, K. L.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682 (2004).
[CrossRef]

Eom, K.

M. D. Dai, K. Eom, and C. W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett. 95, 203104 (2009).
[CrossRef]

Fam, D. W. H.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Feng, P. X. L.

Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).

Feng, P. X.-L.

J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
[CrossRef]

Feng, X. L.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).

Fontana, M.

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Friedman, A. L.

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

Gammon, D.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Gavartin, E.

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Ge, Y.

Y. Ge and A. Y. Liu, “Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction,” Phys. Rev. B 87, 241408(R) (2013).

Geim, A. K.

A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[CrossRef]

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

Georgiou, T.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Giacometti, V.

B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[CrossRef]

Guinea, F.

A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Gunlycke, D.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

Hanay, M. S.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef]

Hanbicki, A. T.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

He, K.

Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Lett. 13, 2931–2936 (2013).

J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
[CrossRef]

He, Q.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Heinz, T. F.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[CrossRef]

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Hiebert, W. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef]

Hone, J.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[CrossRef]

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Huang, X.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Huang, Y.-K.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Im, S.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Izumi, H.

H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms,” Acoust. Sci. Technol. 30, 348–354 (2009).

Jacobsen, K. W.

K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Phys. Rev. B 85, 115317 (2012).

Jalil, R.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Jernigan, G. G.

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

Jiang, C.

Jonker, B. T.

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

Kaasbjerg, K.

K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Phys. Rev. B 85, 115317 (2012).

Kalb, W.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Katsnelson, M. I.

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
[CrossRef]

Kim, C. W.

M. D. Dai, K. Eom, and C. W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett. 95, 203104 (2009).
[CrossRef]

Kim, H.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Kim, J. H.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Kim, P.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Kioseoglou, G.

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
[CrossRef]

B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[CrossRef]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[CrossRef]

Kymissis, I.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Kysar, J. W.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Late, D. J.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Lee, C.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[CrossRef]

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Lee, H. S.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Lee, J.

Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).

J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
[CrossRef]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
[CrossRef]

Li, H.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Li, J.

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

Li, J. J.

J. J. Li and K. D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

J. J. Li, C. Jiang, B. Chen, and K. D. Zhu, “Optical mass sensing with a carbon nanotube resonator,” J. Opt. Soc. Am. B 29, 965–969 (2012).
[CrossRef]

Li, M.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2, 114–120 (2007).
[CrossRef]

Li, T.

T. Li, “Ideal strength and phonon instability in single-layer MoS2,” Phys. Rev. B 85, 235407 (2012).

Li, X.

X. Li, F. Zhang, and Q. Niu, “Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer,” Phys. Rev. Lett. 110, 066803 (2013).
[CrossRef]

Lichtenstein, A. I.

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

Liu, A. Y.

Y. Ge and A. Y. Liu, “Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction,” Phys. Rev. B 87, 241408(R) (2013).

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Liu, B.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
[CrossRef]

Lu, G.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Lu, H. Z.

H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, “Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions,” Phys. Rev. Lett. 110, 016806 (2013).
[CrossRef]

Luo, J.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Mahan, G. D.

G. D. Mahan, Many-Particle Physics (Plenum, 1981).

Mak, K. F.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Lett. 13, 2931–2936 (2013).

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[CrossRef]

Mertens, J.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Phototermal self-excitation of nanomechanical resonators in liquids,” Appl. Phys. Lett. 92, 173108 (2008).
[CrossRef]

Miller, N.

K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
[CrossRef]

Min, S.-W.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Molina-Sanchez, A.

A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B 84, 155413 (2011).

Morozov, S. V.

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

Moser, J.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

Naik, A. K.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef]

Nam, T.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Nene, P.

J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.

Niu, Q.

X. Li, F. Zhang, and Q. Niu, “Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer,” Phys. Rev. Lett. 110, 066803 (2013).
[CrossRef]

Novoselov, K. S.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

Pan, L.

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

Paranjape, M.

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Park, M. K.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

Peres, N. M. R.

A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Perkins, F. K.

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

Poole, C.

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Lett. 13, 2931–2936 (2013).

Poot, M.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

Qiu, H.

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
[CrossRef]

B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[CrossRef]

Radisavljevic, B.

B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[CrossRef]

Ramos, D.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Phototermal self-excitation of nanomechanical resonators in liquids,” Appl. Phys. Lett. 92, 173108 (2008).
[CrossRef]

Rana, F.

J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.

Rao, C. N. R.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Rice, C.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Rinzan, M.

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Rivière, R.

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Rosenblatt, S.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Roukes, M. L.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2, 114–120 (2007).
[CrossRef]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682 (2004).
[CrossRef]

Rubio-Bollinger, G.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

Rurali, R.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

Ryu, S.

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

Schliesser, A.

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Schwab, K. C.

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

Sham, L. J.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Shan, J.

Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Lett. 13, 2931–2936 (2013).

J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
[CrossRef]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[CrossRef]

Shaw, S. W.

K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
[CrossRef]

Shen, S. Q.

H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, “Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions,” Phys. Rev. Lett. 110, 016806 (2013).
[CrossRef]

Shi, Y.

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

Shirodkar, S. N.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Song, Y.

Y. Song and H. Dery, “Transport theory of monolayer transition-metal dichalcogenides through symmetry,” Phys. Rev. Lett. 111, 026601 (2013).
[CrossRef]

Steel, D. G.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Steele, G. A.

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

Stormer, H. L.

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

Strait, J.

J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.

Sun, B.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Suzuki, H.

H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms,” Acoust. Sci. Technol. 30, 348–354 (2009).

Tamayo, J.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Phototermal self-excitation of nanomechanical resonators in liquids,” Appl. Phys. Lett. 92, 173108 (2008).
[CrossRef]

Tang, H. X.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2, 114–120 (2007).
[CrossRef]

Thygesen, K. S.

K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Phys. Rev. B 85, 115317 (2012).

Tok, A. I. Y.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Topsakal, M.

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three-and two-dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).

Turner, K. L.

Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
[CrossRef]

van der Zant, H. S. J.

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

van Leeuwen, R.

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

Vdovin, E. E.

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

Venstra, W. J.

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

Waghmare, U. V.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Wang, H.

J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.

Wang, X.

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

Wang, Z.

Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).

J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
[CrossRef]

Wehling, T. O.

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

Wei, X. D.

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

Weis, S.

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Wilson-Rae, I.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

Wirtz, L.

A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B 84, 155413 (2011).

Wolverson, D.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Xiao, D.

H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, “Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions,” Phys. Rev. Lett. 110, 016806 (2013).
[CrossRef]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
[CrossRef]

Xu, X.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

Yamaguchi, N.

H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms,” Acoust. Sci. Technol. 30, 348–354 (2009).

Yan, A.

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

Yan, H.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

Yang, Y. T.

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682 (2004).
[CrossRef]

Yao, W.

H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, “Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions,” Phys. Rev. Lett. 110, 016806 (2013).
[CrossRef]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
[CrossRef]

Yao, Z.

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

Yie, Z.

K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
[CrossRef]

Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

Yin, Z.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Young, R. J.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Zan, R.

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

Zdrojek, M.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

Zeng, H.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
[CrossRef]

Zhang, C.

J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.

Zhang, F.

X. Li, F. Zhang, and Q. Niu, “Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer,” Phys. Rev. Lett. 110, 066803 (2013).
[CrossRef]

Zhang, H.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Zhang, Q.

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Zhu, K. D.

J. J. Li and K. D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

J. J. Li, C. Jiang, B. Chen, and K. D. Zhu, “Optical mass sensing with a carbon nanotube resonator,” J. Opt. Soc. Am. B 29, 965–969 (2012).
[CrossRef]

Zielke, M. A.

Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

Zwiller, V.

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

Acoust. Sci. Technol.

H. Suzuki, N. Yamaguchi, and H. Izumi, “Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: application to Japanese drum diaphragms,” Acoust. Sci. Technol. 30, 348–354 (2009).

ACS Nano

J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, “High frequency MoS2 nanomechanical resonators,” ACS Nano 7, 6086–6091 (2013).
[CrossRef]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[CrossRef]

D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, and C. N. R. Rao, “Sensing behavior of atomically thin-layered MoS2 transistors,” ACS Nano 7, 4879–4891 (2013).
[CrossRef]

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano 4, 2695–2700 (2010).
[CrossRef]

Adv. Mater.

A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, “Elastic properties of freely suspended MoS2 nanosheets,” Adv. Mater. 24, 772–775 (2012).
[CrossRef]

A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, “Single-layer MoS2 mechanical resonators,” Adv. Mater. 25, 6719–6723 (2013).
[CrossRef]

AIP Conf. Proc.

K. L. Turner, C. B. Burgner, Z. Yie, S. W. Shaw, and N. Miller, “Nonlinear dynamics of MEMS systems,” AIP Conf. Proc. 1339, 111–113 (2011).
[CrossRef]

Appl. Phys. Lett.

D. Ramos, J. Mertens, M. Calleja, and J. Tamayo, “Phototermal self-excitation of nanomechanical resonators in liquids,” Appl. Phys. Lett. 92, 173108 (2008).
[CrossRef]

M. D. Dai, K. Eom, and C. W. Kim, “Nanomechanical mass detection using nonlinear oscillations,” Appl. Phys. Lett. 95, 203104 (2009).
[CrossRef]

G. Kioseoglou, A. T. Hanbicki, M. Currie, A. L. Friedman, D. Gunlycke, and B. T. Jonker, “Valley polarization and intervalley scattering in monolayer MoS2,” Appl. Phys. Lett. 101, 221907 (2012).
[CrossRef]

H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, “Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,” Appl. Phys. Lett. 100, 123104 (2012).
[CrossRef]

J. Appl. Phys.

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682 (2004).
[CrossRef]

J. Micromech. Microeng.

Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. C.

C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, “A comparative study of lattice dynamics of three-and two-dimensional MoS2,” J. Phys. Chem. C. 115, 16354–16361 (2011).

Nano Lett.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006).

Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett. 11, 1753–1759 (2011).

H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated optical energy gap,” Nano Lett. 12, 3695–3700 (2012).

T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, “Molecular doping of graphene,” Nano Lett. 8, 173–177 (2008).

K. He, C. Poole, K. F. Mak, and J. Shan, “Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2,” Nano Lett. 13, 2931–2936 (2013).

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011).

M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).

F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, “Chemical vapor sensing with monolayer MoS2,” Nano Lett. 13, 668–673 (2013).

Nat. Chem.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).

Nat. Nanotechnol.

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, “Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene,” Nat. Nanotechnol. 6, 339–342 (2011).
[CrossRef]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “A roadmap for graphene,” Nat. Nanotechnol. 7, 490–493 (2012).
[CrossRef]

C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol. 4, 861–867 (2009).
[CrossRef]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol. 8, 497–501 (2013).
[CrossRef]

B. Radisavljević, A. Radenović, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[CrossRef]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2, 114–120 (2007).
[CrossRef]

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009).
[CrossRef]

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nat. Nanotechnol. 7, 301–304 (2012).
[CrossRef]

A. Boisen, “Nanoelectromechanical systems: mass spec goes nanomechanical,” Nat. Nanotechnol. 4, 404–405 (2009).
[CrossRef]

Phys. Rep.

J. J. Li and K. D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013).
[CrossRef]

Phys. Rev. B

C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, “Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2,” Phys. Rev. B 87, 081307 (2013).

A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” Phys. Rev. B 84, 155413 (2011).

T. Li, “Ideal strength and phonon instability in single-layer MoS2,” Phys. Rev. B 85, 235407 (2012).

K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Phys. Rev. B 85, 115317 (2012).

Y. Ge and A. Y. Liu, “Phonon-mediated superconductivity in electron-doped single-layer MoS2: a first-principles prediction,” Phys. Rev. B 87, 241408(R) (2013).

Phys. Rev. Lett.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[CrossRef]

H. Z. Lu, W. Yao, D. Xiao, and S. Q. Shen, “Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions,” Phys. Rev. Lett. 110, 016806 (2013).
[CrossRef]

X. Li, F. Zhang, and Q. Niu, “Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer,” Phys. Rev. Lett. 110, 066803 (2013).
[CrossRef]

Y. Song and H. Dery, “Transport theory of monolayer transition-metal dichalcogenides through symmetry,” Phys. Rev. Lett. 111, 026601 (2013).
[CrossRef]

Phys. Today

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[CrossRef]

Rev. Mod. Phys.

A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).
[CrossRef]

Rev. Sci. Instrum.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2005).
[CrossRef]

Sci. Rep.

M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, “Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions,” Sci. Rep. 3, 1634–1639 (2013).
[CrossRef]

Z. Wang, J. Lee, K. He, J. Shan, and P. X. L. Feng, “Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators,” Sci. Rep. 4, 3919–3925 (2014).

Science

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007).
[CrossRef]

S. Weis, R. Rivière, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385–388 (2008).
[CrossRef]

A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).
[CrossRef]

Small

H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, “Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature,” Small 8, 63–67 (2012).
[CrossRef]

Other

G. D. Mahan, Many-Particle Physics (Plenum, 1981).

R. W. Boyd, Nonlinear Optics (Academic, 1992), p. 225.

J. Strait, P. Nene, H. Wang, C. Zhang, and F. Rana, “Carrier relaxation dynamics in MoS2 measured by optical/THz pump–probe spectroscopy,” in Conference on Lasers and Electro-optics (CLEO 2013): Laser Science to Photonic Applications, OSA Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Proposed setup of the nano-optomechanical system based on monolayer MoS2 suspended on the Si/SiO2 substrate with the optical pump-probe technique. (a) Molecular structure of MoS2. (b) Energy-level diagram of exciton in the MoS2 coupled to the resonator. (c) The biomolecules (influenza virus and HIV virus) are deposited onto the surface of the resonator.

Fig. 2.
Fig. 2.

Block diagram describing the process for mass sensing.

Fig. 3.
Fig. 3.

Probe absorption spectrum as a function of the detuning of the probe beam from the exciton resonance Δs with several different coupling strengthes ξ at Δc=ω0. The inset shows the splitting of two peaks as a function of the coupling strength. The parameters used are ω0=1.2GHz, ξ=0.09, Ω2=0.1(GHz)2, γ0=0.6MHz, and Γ2=0.25GHz.

Fig. 4.
Fig. 4.

Optical Kerr coefficient Reχ(3) as a function of the detuning Δs at Ω2=0.25(GHz)2 with three vibrational frequencies of MoS2 resonator (ω0=1.0GHz, ω0=1.2GHz, and ω0=1.5GHz). The other parameters used are the same as Fig. 3.

Fig. 5.
Fig. 5.

Optical Kerr coefficient with and without landing the external biomolecule onto the surface of the MoS2 resonator. The black curve shows the original resonance of the resonator, the red curve indicates the resonance after landing one influenza virus, and the green curve shows the resonance after depositing one HIV virus. The inset exhibits the relationship between the frequency shift of the resonator and the number of deposited biomolecules. The other parameters used are the same as Fig. 3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ω0=(kd2)16Dρvd4[(kd2)2+γd44D],
kd/2=α+(βα)eηeϱlnx,
H=ΔcSz+ω0Ψ+Ψ+ω0ξSz(Ψ++Ψ)μEc(S++S)μEs(S+eiδt+Seiδt),
S˙z=Γ1(Sz+1/2)+iΩc(S+S)+(iμEs/)(S+eiδtSeiδt),
S˙=[i(Δc+ω0ξΠ)+Γ2]S2iΩcSz2iμEseiδtSz/+τ^in(t),
Π¨+γ0Π˙+ω02Π=2ω02ξSz+ς^(t),
ς^+(t)ς^(t)=γ0ω0dω2πωeiω(tt)[1+coth(ω2κBT)],
Γ1(n0+1)[Γ22+(Δcξ2ω0n0)2]+4Γ2Ωc2n0=0.
δO=O+eiδt+Oeiδt,O=Sz,S,Π.
χ(1)(ωs)=[(Θ4*+B1*Θ3)Θ1B2in0Θ4*]Γ2B12Θ1Θ3*+Θ2Θ4*,
χ(3)(ωs)=[(Θ2*+Θ3Θ1*)Θ3B4iw0Θ3B3]Γ23(Θ4Θ2*B32Θ3Θ1*)Ωc2.

Metrics