Abstract

We report on reflectivity and transmission patterns resembling Newton rings at the surface of a broad range of dielectric materials upon irradiation with single femtosecond laser pulses. We demonstrate that the patterns are due to the formation of a submicrometer layer of modified material underneath the laser-irradiated region. This permanent layer acts as a low-finesse micro Fabry–Perot etalon, producing a system of dark and bright rings upon illumination with narrowband light, whose number and optical contrast are related to thickness and optical constants of the layer. We find that the appearance of Newton rings is a universal phenomenon in fs-laser irradiated inorganic dielectrics (amorphous and crystalline), polymers, and semiconductors above the ablation threshold. We demonstrate how this phenomenon can be exploited for characterization of the layer by studying in detail three different dielectric materials as model systems, namely, fused silica, quartz, and phosphate glass, at fluences above and below the ablation threshold. An analysis of the Newton rings allows quantifying in a simple way the sign and amount of the changes in the complex refractive index as well as the thickness of the laser-modified layer. This technique greatly helps in characterizing the often problematic residual surface layer produced in laser structuring applications and has the ability to serve as an in situ, real-time monitor for minimizing its thickness and optical changes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Misawa and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (WILEY-VCH, 2006).
  2. K. Sugioka, Laser Precision Microfabrication, Springer Series in Materials Science 135 (Springer-Verlag, 2010).
  3. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag2012).
  4. P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
    [CrossRef]
  5. R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
    [CrossRef]
  6. J. Hernandez-Rueda, J. Siegel, M. R. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” J. Opt. Soc. Am. B 30, 1352–1356 (2013).
    [CrossRef]
  7. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
    [CrossRef]
  8. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
    [CrossRef]
  9. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
    [CrossRef]
  10. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
  11. H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
    [CrossRef]
  12. F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
    [CrossRef]
  13. S. Onda, W. Watanabe, K. Yamada, and K. Itoh, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22, 2437–2443 (2005).
    [CrossRef]
  14. T. T. Fernandez, P. Haro-Gonzalez, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38, 5248–5251 (2013).
    [CrossRef]
  15. J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
    [CrossRef]
  16. B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
    [CrossRef]
  17. J. Cugat, A. R. De Cruz, R. Solé, A. Ferrer, J. J. Carvajal, X. Mateos, J. Massons, J. Solís, G. Lifante, F. Díaz, and M. Aguiló, “Femtosecond-laser microstructuring of ribs on active (Yb, Nb):RTP/RTP planar waveguides,” J. Lightwave Technol. 31, 385–390 (2013).
    [CrossRef]
  18. P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
    [CrossRef]
  19. J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
    [CrossRef]
  20. J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys. A 84, 63–66 (2006).
    [CrossRef]
  21. J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
    [CrossRef]
  22. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
    [CrossRef]
  23. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time and space resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
    [CrossRef]
  24. D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
    [CrossRef]
  25. J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
    [CrossRef]
  26. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  27. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [CrossRef]
  28. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
    [CrossRef]
  29. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef]
  30. D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
    [CrossRef]
  31. M. A. Villegas and J. M. F. Navarro, “Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system,” J. European Ceramic Soc. 27, 2715–2723 (2007).
    [CrossRef]
  32. http://refractiveindex.info/ .
  33. A. K. Tomar, S. Mahendia, and S. Kumar, “Modification in optical and electrical properties of poly (methyl methacrylate) on blending with polyaniline,” Int. J. Nanosci. 10, 1107–1111 (2011).
    [CrossRef]
  34. L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).
  35. A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.
  36. M. Born and E. Wolf, eds., Principles of Optics, 6th ed. (Pergamon, 1980), Sect. 1.6.
  37. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
    [CrossRef]
  38. A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
    [CrossRef]
  39. W. Kautek and J. Krüger, “Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials,” Proc. SPIE 2207, 600–611 (1994).
  40. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non. Cryst. Solids 239, 91–95 (1998).
    [CrossRef]
  41. H.-B. Sun and S. Juodkazis, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
    [CrossRef]
  42. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
  43. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496–2504 (2002).
    [CrossRef]

2013 (5)

2012 (2)

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

2011 (1)

A. K. Tomar, S. Mahendia, and S. Kumar, “Modification in optical and electrical properties of poly (methyl methacrylate) on blending with polyaniline,” Int. J. Nanosci. 10, 1107–1111 (2011).
[CrossRef]

2010 (2)

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

2008 (3)

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

2007 (3)

M. A. Villegas and J. M. F. Navarro, “Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system,” J. European Ceramic Soc. 27, 2715–2723 (2007).
[CrossRef]

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[CrossRef]

2006 (3)

J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys. A 84, 63–66 (2006).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time and space resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

2005 (3)

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

S. Onda, W. Watanabe, K. Yamada, and K. Itoh, “Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses,” J. Opt. Soc. Am. B 22, 2437–2443 (2005).
[CrossRef]

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

2004 (1)

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

2003 (3)

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

2002 (1)

2000 (3)

H.-B. Sun and S. Juodkazis, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

1998 (2)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non. Cryst. Solids 239, 91–95 (1998).
[CrossRef]

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

1994 (1)

W. Kautek and J. Krüger, “Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials,” Proc. SPIE 2207, 600–611 (1994).

1982 (1)

1979 (1)

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Aguiló, M.

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Armengol, J.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Ashkenasi, D.

A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.

Ashmore, J.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

Bachelier, G.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time and space resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

Balling, P.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[CrossRef]

Barcones, B.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Baumert, T.

Ben-Yakar, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Bloembergen, N.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Bonse, J.

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys. A 84, 63–66 (2006).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time and space resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

Borrelli, N. F.

Brenk, O.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Brzezinka, K.-W.

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

Bulgakova, N. M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Burakov, I. M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Byer, R. L.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

Campbell, E. E. B.

A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.

Cardinal, T.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

Carvajal, J. J.

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Cerullo, G.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag2012).

Couzi, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

Cugat, J.

D’Oliveira, P.

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

Daguzan, Ph.

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

De Cruz, A. R.

de la Cruz, A. R.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Díaz, F.

Diez-Blanco, V.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Domingo, C.

T. T. Fernandez, P. Haro-Gonzalez, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38, 5248–5251 (2013).
[CrossRef]

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

Englert, L.

Fernandez, H.

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

Fernandez, P.

Fernandez, T. T.

Fernandez-Navarro, J. M.

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

Ferrer, A.

Fierro, J. L. G.

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Fotakis, C.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Galvan-Sosa, M.

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

Galvan-Sosa, M. R.

Garcia-Ramos, J. V.

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

Gawelda, W.

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

Glatzel, U.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).

Gonzalo, J.

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

Gorelik, T.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[CrossRef]

Grodsky, R.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

Guizard, S.

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

Haag, L.

Harkin, A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

Haro-Gonzalez, P.

Hernandez, M.

Hernandez-Rueda, J.

J. Hernandez-Rueda, J. Siegel, M. R. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” J. Opt. Soc. Am. B 30, 1352–1356 (2013).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

Hertel, I. V.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non. Cryst. Solids 239, 91–95 (1998).
[CrossRef]

Hodgson, R. T.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Hoffmann, D. H. H.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Itoh, K.

Jaque, D.

Ji, Y.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Jiao, L.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Jin, Y.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Juodkazis, S.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

H.-B. Sun and S. Juodkazis, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Kautek, W.

W. Kautek and J. Krüger, “Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials,” Proc. SPIE 2207, 600–611 (1994).

Koudoumas, E.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Krüger, J.

W. Kautek and J. Krüger, “Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials,” Proc. SPIE 2207, 600–611 (1994).

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Krutsch, H.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Kumar, S.

A. K. Tomar, S. Mahendia, and S. Kumar, “Modification in optical and electrical properties of poly (methyl methacrylate) on blending with polyaniline,” Int. J. Nanosci. 10, 1107–1111 (2011).
[CrossRef]

Lifante, G.

Liu, J. M.

Liu, P. L.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Liu, T.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Lorenz, M.

A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.

Loza-Alavarez, P.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Mahendia, S.

A. K. Tomar, S. Mahendia, and S. Kumar, “Modification in optical and electrical properties of poly (methyl methacrylate) on blending with polyaniline,” Int. J. Nanosci. 10, 1107–1111 (2011).
[CrossRef]

Martin, P.

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

Massons, J.

Mateos, X.

Matsuo, S.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

Mazur, E.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

Medvedev, N.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

Meixner, A.

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

Mermillod-Blondin, A.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Meynadier, P.

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

Misawa, H.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non. Cryst. Solids 239, 91–95 (1998).
[CrossRef]

Munoz-Martin, D.

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

Navarro, J. M. F.

M. A. Villegas and J. M. F. Navarro, “Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system,” J. European Ceramic Soc. 27, 2715–2723 (2007).
[CrossRef]

Nishii, J.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

Nolte, S.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[CrossRef]

Onda, S.

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Osellame, R.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag2012).

Perdrix, M.

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

Pérez-Rodríguez, A.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Petite, G.

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

Puerto, D.

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

Ramponi, R.

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag2012).

Rethfeld, B.

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007).
[CrossRef]

Richardson, K.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

Richardson, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Rivero, C.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

Rosenfeld, A.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.

Sarpe-Tudoran, C.

Schou, J.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[CrossRef]

Shen, M.

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

Siegel, J.

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
[CrossRef]

T. T. Fernandez, P. Haro-Gonzalez, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38, 5248–5251 (2013).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, M. R. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” J. Opt. Soc. Am. B 30, 1352–1356 (2013).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time and space resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Solé, R.

Solis, J.

J. Hernandez-Rueda, J. Siegel, M. R. Galvan-Sosa, A. R. de la Cruz, and J. Solis, “Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts,” J. Opt. Soc. Am. B 30, 1352–1356 (2013).
[CrossRef]

T. T. Fernandez, P. Haro-Gonzalez, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38, 5248–5251 (2013).
[CrossRef]

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012).
[CrossRef]

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time and space resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Solís, J.

Sotillo, B.

Spyridaki, M.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Stoian, R.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.

Stone, H. A.

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

Streltsov, A. M.

Sturm, H.

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
[CrossRef]

Sugioka, K.

K. Sugioka, Laser Precision Microfabrication, Springer Series in Materials Science 135 (Springer-Verlag, 2010).

Sun, H. B.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

Sun, H.-B.

H.-B. Sun and S. Juodkazis, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Tomar, A. K.

A. K. Tomar, S. Mahendia, and S. Kumar, “Modification in optical and electrical properties of poly (methyl methacrylate) on blending with polyaniline,” Int. J. Nanosci. 10, 1107–1111 (2011).
[CrossRef]

Tong, Y.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Tuennermann, A.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[CrossRef]

Tzanetakis, P.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Varel, H.

A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.

Vega, F.

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Villegas, M. A.

M. A. Villegas and J. M. F. Navarro, “Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system,” J. European Ceramic Soc. 27, 2715–2723 (2007).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Wang, F.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Wang, L.

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Watanabe, M.

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

Watanabe, W.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Will, M.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[CrossRef]

Winkler, S. W.

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Wollenhaupt, M.

Yamada, K.

Yen, R.

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

Zoubir, A.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

Appl. Phys. A (6)

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys. A 76, 309–311 (2003).

J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A 112, 185–189 (2013).
[CrossRef]

B. Rethfeld, O. Brenk, N. Medvedev, H. Krutsch, and D. H. H. Hoffmann, “Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation,” Appl. Phys. A 101, 19–25 (2010).
[CrossRef]

J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys. A 84, 63–66 (2006).
[CrossRef]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83, 3030–3032 (2003).
[CrossRef]

P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979).
[CrossRef]

F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Pérez-Rodríguez, and P. Loza-Alavarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87, 021109 (2005).
[CrossRef]

Appl. Surf. Sci. (2)

J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012).
[CrossRef]

Int. J. Nanosci. (1)

A. K. Tomar, S. Mahendia, and S. Kumar, “Modification in optical and electrical properties of poly (methyl methacrylate) on blending with polyaniline,” Int. J. Nanosci. 10, 1107–1111 (2011).
[CrossRef]

J. Appl. Phys. (2)

D. Munoz-Martin, H. Fernandez, J. M. Fernandez-Navarro, J. Gonzalo, J. Solis, J. L. G. Fierro, C. Domingo, and J. V. Garcia-Ramos, “Nonlinear optical susceptibility of multicomponent tellurite thin film glasses,” J. Appl. Phys. 104, 113510 (2008).
[CrossRef]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time-and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103, 054910 (2008).
[CrossRef]

J. European Ceramic Soc. (1)

M. A. Villegas and J. M. F. Navarro, “Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system,” J. European Ceramic Soc. 27, 2715–2723 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Non. Cryst. Solids (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non. Cryst. Solids 239, 91–95 (1998).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (2)

H. B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

H.-B. Sun and S. Juodkazis, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[CrossRef]

J. Phys. D (1)

A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40, 1447–1459 (2007).
[CrossRef]

Opt. Eng. (1)

R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (3)

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time and space resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74, 134106 (2006).
[CrossRef]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).

P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B 55, 5799–5810 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[CrossRef]

Proc. SPIE (2)

W. Kautek and J. Krüger, “Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials,” Proc. SPIE 2207, 600–611 (1994).

L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010).

Rep. Prog. Phys. (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[CrossRef]

Rev. Sci. Instrum. (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Other (6)

http://refractiveindex.info/ .

A. Rosenfeld, D. Ashkenasi, E. E. B. Campbell, M. Lorenz, R. Stoian, and H. Varel, “Material processing with femtosecond laser pulses,” in Lasers ’98, V. J. Corcoran and T. A. Goldman, eds. (STS, 1999), pp. 7–23.

M. Born and E. Wolf, eds., Principles of Optics, 6th ed. (Pergamon, 1980), Sect. 1.6.

H. Misawa and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (WILEY-VCH, 2006).

K. Sugioka, Laser Precision Microfabrication, Springer Series in Materials Science 135 (Springer-Verlag, 2010).

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 123 (Springer-Verlag2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Optical microscopy images at 460 nm illumination wavelength of Newton rings in different materials. (b) Scheme of the multilayer interference system for the irradiated area, where an example of the transmitted and reflected patterns is shown.

Fig. 2.
Fig. 2.

(a) Optical microscopy images of an irradiation produced using a 560 fs pulse at 460 and 625 nm for the illumination wavelength. (b) Their corresponding reflectivity (blue and orange solid lines) and topography (black dotted line) profiles. (c) Reflectivity profiles (blue and orange solid lines) simulated by analogy with a micro Fabry–Perot etalon similar to the real system.

Fig. 3.
Fig. 3.

Optical microscopy images (λillum.=460nm, 40μm×25μm) of irradiations produced in fused silica using laser pulses at different durations along with the absorption coefficient estimated for two different illumination wavelengths (460 and 625 nm) as a function of the pulse duration. The fluence for each irradiation as the pulse duration increases is 6.5J/cm2, 6.5J/cm2, 8.0J/cm2, 9.9J/cm2, 12.2J/cm2, and 11.8J/cm2.

Fig. 4.
Fig. 4.

Optical micrographs for an irradiation produced in fused silica using a laser pulse at 560 fs. The sample images were recorded before (upper image) and after an annealing process, reaching a maximum temperature at 600°C (central image) and 900°C (lower image).

Fig. 5.
Fig. 5.

(a) and (b) Optical micrographs of an irradiation produced in quartz using a transform-limited pulse, in reflection and transmission mode. (c) Reflectivity profiles at three illumination wavelengths extracted from the micrographs along with the (d) simulated profiles performed by using the interference model based on a multilayer system.

Fig. 6.
Fig. 6.

Optical microscopy images (λillum.=460nm, 40μm×25μm) of irradiations produced in phosphate glass using laser pulses at 130 fs (5.9J/cm2) and 950 fs (14.6J/cm2). The corresponding topography profiles are shown in the graphs below.

Fig. 7.
Fig. 7.

(a) Optical micrographs together with the corresponding (b) reflectivity profiles of an irradiation produced in phosphate glass using a 950 fs pulse (14.6J/cm2). (c) Topography profile of the crater generated on the sample surface along with the modified layer thickness, which has been calculated for each lateral position by exploiting the bijective relation between the experimental and the calculated reflectivity profiles. Within the graph the refractive index values are specified for each layer present in the optical system.

Tables (1)

Tables Icon

Table 1. Optical Properties of the Irradiated Materials at 460 nm along with the Optical Modification Threshold at the Corresponding Pulse Duration [24,25,3033]

Metrics