Abstract

In this paper, we study the optical response of 1D light harvesting structures that are illuminated by a conventional lens. Our theoretical study shows that high transmission efficiencies are obtained when the structure is placed near the focal plane of the lens. The considered structure is a finite slit-groove array (SGA) with a given number of grooves, which are symmetrically distributed with respect to a central slit. The SGA is nanopatterned on an opaque metallic film. It is found that a total transmittance of 80% is achieved even for a single slit when (1) Fabry–Perot-like modes are excited inside the slit and (2) the effective cross section of the aperture becomes of the order of the FWHM of the incident beam. A further enhancement of 8% is produced by the groove array. The optimal geometry for the groove array consists of a moderate number of grooves (4) at either side of the slit, separated by a distance of half the incident wavelength λ. Grooves should be deeper (with depth λ/4) than those typically reported for plane wave illumination in order to increase their individual scattering cross section.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
    [CrossRef]
  2. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
    [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  4. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  5. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
    [CrossRef]
  6. J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
    [CrossRef]
  7. T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
    [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef]
  9. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,” Appl. Phys. Lett. 81, 4661–4663 (2002).
    [CrossRef]
  10. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef]
  11. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098–1100 (2004).
    [CrossRef]
  12. D. Thomas and H. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
    [CrossRef]
  13. O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
    [CrossRef]
  14. F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, “Optimal light harvesting structures at optical and infrared frequencies,” Opt. Express 20, 25441–25453 (2012).
    [CrossRef]
  15. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef]
  16. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef]
  17. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [CrossRef]
  18. I. Smolyaninov, Y.-J. Hung, and C. Davis, “Magnifying superlenses in the visible frequency range,” Science 315, 1699–1701 (2007).
    [CrossRef]
  19. C. Ma and Z. Liu, “A super resolution metalenses with phase compensation mechanism,” Appl. Phys. Lett. 96, 183103 (2010).
    [CrossRef]
  20. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
  21. S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
    [CrossRef]
  22. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
    [CrossRef]
  23. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
  24. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [CrossRef]
  25. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
    [CrossRef]
  26. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
    [CrossRef]
  27. P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
    [CrossRef]
  28. R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980).
    [CrossRef]
  29. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  30. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).
  31. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
    [CrossRef]
  32. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
    [CrossRef]
  33. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
    [CrossRef]
  34. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  35. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  37. C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
    [CrossRef]
  38. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
    [CrossRef]
  39. P. Lalanne, J. P. Hugonin, and C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  40. Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
    [CrossRef]
  41. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasi-periodic hole arrays,” Opt. Express 16, 9222–9238 (2008).
    [CrossRef]
  42. V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
    [CrossRef]

2014 (1)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
[CrossRef]

2012 (4)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
[CrossRef]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, “Optimal light harvesting structures at optical and infrared frequencies,” Opt. Express 20, 25441–25453 (2012).
[CrossRef]

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

2010 (2)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

C. Ma and Z. Liu, “A super resolution metalenses with phase compensation mechanism,” Appl. Phys. Lett. 96, 183103 (2010).
[CrossRef]

2009 (1)

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

2008 (5)

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasi-periodic hole arrays,” Opt. Express 16, 9222–9238 (2008).
[CrossRef]

2007 (4)

Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

I. Smolyaninov, Y.-J. Hung, and C. Davis, “Magnifying superlenses in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef]

2006 (2)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

2005 (5)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

2004 (2)

S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098–1100 (2004).
[CrossRef]

D. Thomas and H. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

2003 (3)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

2002 (4)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,” Appl. Phys. Lett. 81, 4661–4663 (2002).
[CrossRef]

2001 (2)

2000 (1)

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

1980 (1)

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

’t Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Akarca-Biyikli, S.

S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098–1100 (2004).
[CrossRef]

Alarverdyan, Y.

Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Atwater, H. A.

Auckland, D. T.

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Berini, P.

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
[CrossRef]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Bonod, N.

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).

Brucoli, G.

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[CrossRef]

Bulu, I.

S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098–1100 (2004).
[CrossRef]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Collin, S.

S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

Davis, C.

I. Smolyaninov, Y.-J. Hung, and C. Davis, “Magnifying superlenses in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef]

de León-Pérez, F.

F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, “Optimal light harvesting structures at optical and infrared frequencies,” Opt. Express 20, 25441–25453 (2012).
[CrossRef]

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Dintinger, J.

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Duch, A. C.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Dunbar, L. A.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Ebbesen, T. W.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Ebessen, T.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Eckert, R.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Eurenius, L.

Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Feldmann, J.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

García-Vidal, F. J.

F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, “Optimal light harvesting structures at optical and infrared frequencies,” Opt. Express 20, 25441–25453 (2012).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Gérard, D.

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).

Grenet, E.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Guillaumée, M.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Häfele, V.

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

Harrington, R. F.

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,” Appl. Phys. Lett. 81, 4661–4663 (2002).
[CrossRef]

Hohenau, A.

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

Hooft, G. W.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef]

Hughes, H.

D. Thomas and H. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Hung, Y.-J.

I. Smolyaninov, Y.-J. Hung, and C. Davis, “Magnifying superlenses in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef]

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Janssen, O. T. A.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Koch, M.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Krenn, J. R.

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Kuipers, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,” Appl. Phys. Lett. 81, 4661–4663 (2002).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Leitner, A.

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Lenne, P.-F. m. c.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasi-periodic hole arrays,” Opt. Express 16, 9222–9238 (2008).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

C. Ma and Z. Liu, “A super resolution metalenses with phase compensation mechanism,” Appl. Phys. Lett. 96, 183103 (2010).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

López-Tejeira, F.

F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, “Optimal light harvesting structures at optical and infrared frequencies,” Opt. Express 20, 25441–25453 (2012).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

Ma, C.

C. Ma and Z. Liu, “A super resolution metalenses with phase compensation mechanism,” Appl. Phys. Lett. 96, 183103 (2010).
[CrossRef]

Mahboub, O.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Martín-Moreno, L.

F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, “Optimal light harvesting structures at optical and infrared frequencies,” Opt. Express 20, 25441–25453 (2012).
[CrossRef]

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Olsson, E.

Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098–1100 (2004).
[CrossRef]

Pacifici, D.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pardo, F.

S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

Pellegrin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Pelouard, J.-L.

S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

Plank, H.

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

Popov, E.

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Rigneault, H.

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

Rodier, C.

P. Lalanne, J. P. Hugonin, and C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,” Appl. Phys. Lett. 81, 4661–4663 (2002).
[CrossRef]

Santschi, C.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

Sepúlveda, B.

Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Smolyaninov, I.

I. Smolyaninov, Y.-J. Hung, and C. Davis, “Magnifying superlenses in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
[CrossRef]

Stanley, R. P.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Steininger, G.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Sweatlock, L. A.

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef]

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Thomas, D.

D. Thomas and H. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Urbach, H. P.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).

Villate-Guío, F.

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

von Plessen, G.

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Walters, R. J.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Wenger, J.

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008–3020 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Appl. Phys. Lett. (9)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,” Appl. Phys. Lett. 81, 4661–4663 (2002).
[CrossRef]

S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85, 1098–1100 (2004).
[CrossRef]

C. Ma and Z. Liu, “A super resolution metalenses with phase compensation mechanism,” Appl. Phys. Lett. 96, 183103 (2010).
[CrossRef]

S. Collin, F. Pardo, and J.-L. Pelouard, “Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[CrossRef]

C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

V. Häfele, F. de León-Pérez, A. Hohenau, L. Martín-Moreno, H. Plank, J. R. Krenn, and A. Leitner, “Interference of surface plasmon polaritons excited at hole pairs in thin gold films,” Appl. Phys. Lett. 101, 201102 (2012).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Laser Photon. Rev. (1)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
[CrossRef]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Nat. Commun. (1)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

Nat. Photonics (2)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Nat. Phys. (1)

Y. Alarverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

New J. Phys. (2)

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (7)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef]

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef]

P. Lalanne, J. P. Hugonin, and C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Science (5)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. Ebessen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef]

I. Smolyaninov, Y.-J. Hung, and C. Davis, “Magnifying superlenses in the visible frequency range,” Science 315, 1699–1701 (2007).
[CrossRef]

Solid State Commun. (1)

D. Thomas and H. Hughes, “Enhanced optical transmission through a subwavelength 1d aperture,” Solid State Commun. 129, 519–524 (2004).
[CrossRef]

Other (4)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic representation of a slit-groove array on a free-standing gold film (thickness hs) illuminated by a thin cylindrical lens with focal distance f. A central slit of width ws is surrounded by 2Ng grooves (width wg, depth hg, period P), which are symmetrically distributed at either side of the slit. The distance from the slit to the first groove is called dsg. The aperture is centered at the principal axis of the lens.

Fig. 2.
Fig. 2.

(a) Normalized intensities of the parallel components of electric (C0λIE/2) and magnetic (λIH/2C0) fields at the focal plane of the lens. (b) Contour plot of λIH(x,zF)/2C0 (in a logarithmic scale). Both zF and x are in units of λ.

Fig. 3.
Fig. 3.

(a) Total transmittance T (black solid line) and effective cross-section σ (red-dashed line, normalized by σpw=λ/π) versus zF/λ for a slit of width ws=0.1λ in a metal film of thickness hs=0.37λ illuminated by a lens. The red-dotted horizontal line represents σpw(ws=0.1λ)=0.99σpw for the same slit under PW illumination. (b) TF as a function of λ for a gold film. The slit width and the metal thickness (ws,hs) are equal to (0.05, 0.26 μm) for λ=0.65μm, (0.1, 0.37 μm) for λ=1.0μm, (0.14, 0.50 μm) for λ=1.35μm, (0.30, 1.55 μm) for λ=4.0μm, (0.6, 3.1 μm) for λ=8.0μm, and (0.78, 4.1 μm) for λ=10.6μm. The horizontal line represents TF for a PEC.

Fig. 4.
Fig. 4.

(a) T versus zF/λ for a SGA with Ng=0, 1, 2 grooves optimized at the focus of the lens. The optimal geometry of the grooves is wg=0.1λ, hg=0.3λ, dsg=0.4λ, and (for Ng>1) P=0.46λ. The slit is the same as in Fig. 3. The inset shows the intensity of the main peak at the focus (TF) as function of the number of grooves (Ng).

Fig. 5.
Fig. 5.

T, as well as its constituents terms from Eq. (9), as a function on the slit-groove distance, dsg, for a SGA with Ng=1 at focal plane of the lens and the same geometrical parameters of Fig. 4. The magenta horizontal line represents T for the single slit.

Fig. 6.
Fig. 6.

Ratio R=TSGA/Tslit for a SGA optimized for PW illumination and illuminated either by a lens (solid line) or directly by a PW (dashed lined). The inset shows a zoom of R near the focal plane of the lens. In the calculations, we use the same slit as in Fig. 3 and six grooves at each side of the slit with optimal geometry: wg=0.1λ, hg=0.14λ, P=0.95λ, and dsg=0.87λ. The total size of the SGA is L=11.2λ.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Ex(x,z)=14πkλC0kλkλexp[iϕ(k;x,z)]dk,Hy(x,z)=14πkλC0kλkλYkexp[iϕ(k;x,z)]dk,
Ptinc=Re[Ex×Hy*]dx=1.
IE(x,f)=|Ex(x,f)|2=2λC0sinc2(kλx),
(Gααϵα)Eα+β=αGαβEβGνE0δα0=Iα,(G00ϵ0)E0GνE0=0.
Iα(xα,z)=wsπkλC0kλkλYkexp[iϕ(k;xα,z)]sinc(ϕα)dk,
|Iα(0,f)|=2(2wαC0λ)1/2(10wαλ)1/2.
TPradPtinc=Re[GνE0E0*],
σwsPradPslitinc=wsPtincPslitincT,
σ=T2λ.
|E0|=|E0|
Tres=λ|I0|24πws,
Tres=2C0π52π0.8.
σ=C0σpw54σpw0.40λ.
T=Ts+Tg+Tint,

Metrics