Abstract

In this paper, we study the optical response of 1D light harvesting structures that are illuminated by a conventional lens. Our theoretical study shows that high transmission efficiencies are obtained when the structure is placed near the focal plane of the lens. The considered structure is a finite slit-groove array (SGA) with a given number of grooves, which are symmetrically distributed with respect to a central slit. The SGA is nanopatterned on an opaque metallic film. It is found that a total transmittance of 80% is achieved even for a single slit when (1) Fabry–Perot-like modes are excited inside the slit and (2) the effective cross section of the aperture becomes of the order of the FWHM of the incident beam. A further enhancement of 8% is produced by the groove array. The optimal geometry for the groove array consists of a moderate number of grooves (4) at either side of the slit, separated by a distance of half the incident wavelength λ. Grooves should be deeper (with depth λ/4) than those typically reported for plane wave illumination in order to increase their individual scattering cross section.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription