Abstract

We introduce a new class of plasmonic holograms for the near field. These holograms provide complete control of the amplitude and phase of surface plasmon polaritons (SPPs), thereby enabling the generation of any desired plasmonic light beam. The scheme is based on a two-dimensional near-field plasmonic hologram, which couples the SPP from free space into the metal–dielectric interface, and also sets the attributes of the plasmonic beam. We demonstrate the concept for a wide variety of plasmonic beams with different qualities—in particular, “self-similar” Hermite–Gauss beams, “nondiffracting” cosine-Gauss beams, and “self-accelerating” Airy beams.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
    [CrossRef]
  3. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
    [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [CrossRef]
  6. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  8. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  9. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
    [CrossRef]
  10. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [CrossRef]
  11. J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
    [CrossRef]
  12. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010).
    [CrossRef]
  13. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
    [CrossRef]
  14. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
    [CrossRef]
  15. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
    [CrossRef]
  16. A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
    [CrossRef]
  17. I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112, 023903 (2014).
    [CrossRef]
  18. C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, and J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express 19, 19572–19581 (2011)
    [CrossRef]
  19. C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38, 905–907 (2013).
    [CrossRef]
  20. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
    [CrossRef]
  21. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  22. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [CrossRef]
  23. J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55, 599–601 (1967).
    [CrossRef]
  24. W. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979).
    [CrossRef]
  25. Y. Chen, J. Fu, and Z. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19, 23908–23920 (2011).
    [CrossRef]
  26. Y. Chen, M. Zhang, L. Gan, X. Wu, L. Sun, J. Liu, J. Wang, and Z. Li, “Holographic plasmonic lenses for surface plasmons with complex wavefront profile,” Opt. Express 21, 17558–17566 (2013).
    [CrossRef]
  27. J. J. Cowan, “Holography with standing surface plasma waves,” Opt. Commun. 12, 373–378 (1974).
    [CrossRef]
  28. S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351–3354 (1996).
    [CrossRef]
  29. M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
    [CrossRef]
  30. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
    [CrossRef]
  31. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
    [CrossRef]
  32. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
    [CrossRef]
  33. Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013).
    [CrossRef]
  34. J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
    [CrossRef]
  35. R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.
  36. C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
    [CrossRef]
  37. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
  38. A. Libster, I. Eptein, Y. Lilach, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. (submitted).

2014

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

2013

C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38, 905–907 (2013).
[CrossRef]

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Y. Chen, M. Zhang, L. Gan, X. Wu, L. Sun, J. Liu, J. Wang, and Z. Li, “Holographic plasmonic lenses for surface plasmons with complex wavefront profile,” Opt. Express 21, 17558–17566 (2013).
[CrossRef]

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013).
[CrossRef]

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

2012

C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
[CrossRef]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[CrossRef]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[CrossRef]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

2011

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

C. J. Zapata-Rodríguez, S. Vuković, M. R. Belić, D. Pastor, and J. J. Miret, “Nondiffracting Bessel plasmons,” Opt. Express 19, 19572–19581 (2011)
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[CrossRef]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[CrossRef]

Y. Chen, J. Fu, and Z. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19, 23908–23920 (2011).
[CrossRef]

2010

A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

2008

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

2007

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef]

2004

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

1996

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351–3354 (1996).
[CrossRef]

1979

1974

J. J. Cowan, “Holography with standing surface plasma waves,” Opt. Commun. 12, 373–378 (1974).
[CrossRef]

1967

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55, 599–601 (1967).
[CrossRef]

1966

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Alpmann, C.

C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Antoniou, N.

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

Arie, A.

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[CrossRef]

A. Libster, I. Eptein, Y. Lilach, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. (submitted).

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef]

Balthasar Mueller, J. P.

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bartal, G.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.

Bekenstein, R.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.

Belic, M. R.

Boguslawski, M.

C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
[CrossRef]

Bozhevolnyi, S. I.

C. E. Garcia-Ortiz, V. Coello, Z. Han, and S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38, 905–907 (2013).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351–3354 (1996).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

Brown, B. R.

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Burch, J. J.

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55, 599–601 (1967).
[CrossRef]

Cannan, D.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

Capasso, F.

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[CrossRef]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

Chang, S. H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Chen, Y.

Chen, Z.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[CrossRef]

Christodoulides, D. N.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010).
[CrossRef]

Cluzel, B.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

Coello, V.

Cowan, J. J.

J. J. Cowan, “Holography with standing surface plasma waves,” Opt. Commun. 12, 373–378 (1974).
[CrossRef]

deFornel, F.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

Dellinger, J.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

Denz, C.

C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Dolev, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[CrossRef]

Dolores-Calzadilla, V.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Epstein, I.

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[CrossRef]

Eptein, I.

A. Libster, I. Eptein, Y. Lilach, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. (submitted).

Fitrakis, E. P.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Freude, W.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Fu, J.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Gan, L.

Garcia-Ortiz, C. E.

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

Genevet, P.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Greenfield, E.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Han, Z.

Hoessbacher, C.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Hu, Y.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

Janunts, N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Kaminer, I.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.

Kato, J.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[CrossRef]

Kats, M. A.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[CrossRef]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

Kawata, S.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Kivshar, Y. S.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Klein, A. E.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Kohl, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Koos, C.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Lee, W.

Leuthold, J.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Li, L.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Li, T.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Li, Z.

Libster, A.

A. Libster, I. Eptein, Y. Lilach, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. (submitted).

Lilach, Y.

A. Libster, I. Eptein, Y. Lilach, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. (submitted).

Lin, J.

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[CrossRef]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

Liu, J.

Liu, Y.

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef]

Lohmann, A. W.

Lu, C.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martínez-Pastor, J.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Melikyan, A.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Milne, W. I.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013).
[CrossRef]

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Minovich, A. E.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

Miret, J. J.

Montelongo, Y.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013).
[CrossRef]

Morandotti, R.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

Muehlbrandt, S.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Neshev, D. N.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Ozaki, M.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[CrossRef]

Pastor, D.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Pertsch, T.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Rose, P.

C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
[CrossRef]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Salandrino, A.

Schatz, G. C.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Schley, R.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.

Segev, M.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

Smit, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Suarez, I.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Sun, L.

Tenorio-Pearl, J. O.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013).
[CrossRef]

Tomkos, I.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Vohnsen, B.

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351–3354 (1996).
[CrossRef]

Vukovic, S.

Wang, J.

Wang, Q.

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

Wang, S.

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Wilkinson, T. D.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013).
[CrossRef]

Wördemann, M.

C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
[CrossRef]

Wu, X.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Yin, X.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[CrossRef]

Yuan, G.

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

Yuan, X.

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

Zapata-Rodríguez, C. J.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Zhang, M.

Zhang, P.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[CrossRef]

Zhang, X.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85, 467 (2004).
[CrossRef]

Laser Photon. Rev.

A. E. Minovich, A. E. Klein, D. N. Neshev, T. Pertsch, Y. S. Kivshar, and D. N. Christodoulides, “Airy plasmons: non-diffracting optical surface waves,” Laser Photon. Rev. 8, 221–232 (2014).
[CrossRef]

Nano Lett.

Y. Montelongo, J. O. Tenorio-Pearl, W. I. Milne, and T. D. Wilkinson, “Polarization switchable diffraction based on subwavelength plasmonic nanoantennas,” Nano Lett. 14, 294–298 (2013).
[CrossRef]

Nat. Commun.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[CrossRef]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef]

Nat. Photonics

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Commun.

J. J. Cowan, “Holography with standing surface plasma waves,” Opt. Commun. 12, 373–378 (1974).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[CrossRef]

Phys. Rev. Lett.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. deFornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[CrossRef]

I. Epstein and A. Arie, “Arbitrary bending plasmonic light waves,” Phys. Rev. Lett. 112, 023903 (2014).
[CrossRef]

S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351–3354 (1996).
[CrossRef]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[CrossRef]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).

Phys. Today

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44 (2008).
[CrossRef]

Proc. IEEE

J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55, 599–601 (1967).
[CrossRef]

Proc. SPIE

C. Alpmann, M. Boguslawski, P. Rose, M. Wördemann, and C. Denz, “Tailored light fields: nondiffracting and self-similar beams for optical structuring and organization,” Proc. SPIE 8274, 82740R (2012).
[CrossRef]

Sci. Am.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007).
[CrossRef]

Science

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332, 218–220 (2011).
[CrossRef]

J. Lin, J. P. Balthasar Mueller, Q. Wang, G. Yuan, N. Antoniou, X. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[CrossRef]

Other

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, G. Bartal, and M. Segev, “Loss-proof self-accelerating plasmons and exponentially growing beams,” in CLEO 2013 Technical Digest (2013), paper QW3N.8.

A. Libster, I. Eptein, Y. Lilach, and A. Arie, “Rapidly accelerating Mathieu and Weber surface plasmon beams,” Phys. Rev. Lett. (submitted).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Illustrations of the different approaches of Fourier hologram and near-field hologram, to obtain a Hermite–Gauss (1,0) beam. (a) Standard scheme for a far-field Fourier hologram—a thin hologram encoded with the inverse Fourier transform of the target beam. The field emanating from the mask is optically Fourier-transformed by a lens and generates the target field in the first diffraction order (we note that the orders diffract right after the mask but are still on axis before the lens). (b) The scheme for a plasmonic near-field hologram—a hologram lying in the (z,y) plane—is encoded with the direct amplitude and phase of the target beam. The hologram is illuminated transversely by the free-space beam, and its first diffraction order couples in to a SPP. The field emanating from the hologram in the near field is the target field.

Fig. 2.
Fig. 2.

(a) Simulation and (b) NSOM measurement of plasmonic Airy beam. (c) SEM image of the plasmonic hologram that generated the plasmonic Airy beam.

Fig. 3.
Fig. 3.

Three-dimensional representation of the NOSM measurements of (a) CG and (b) LCG plasmonic beams, and (c), (d) SEM images of the plasmonic holograms that generated them.

Fig. 4.
Fig. 4.

(a), (c) Numerical simulations and (b), (d) NSOM measurements of LCG and CG plasmonic beams, respectively. The solid red and dashed blue lines marked with “a” and “b” show a cross section of the beams at two different distances and are compared in the inner graphs to show the nondiffracting quality of the beams.

Fig. 5.
Fig. 5.

NSOM measurement of the plasmonic light intensity emanating from the plasmonic hologram for the cases of (a) HG(1,0) and (c) HG(3,0). The beams expand but maintain their shape with propagation. The insets in both figures show the cross section of the simulated (blue curve) and measured (red curve) normalized plasmonic intensity. (b), (d) SEM images of the plasmonic near-field hologram that generated (b) HG(1,0) and (d) HG(3,0) beams.

Fig. 6.
Fig. 6.

(a), (d) Numerical simulations, (b), (e) NSOM measurements, and (c), (f) their cross section at z=10μm (simulated, blue curve; measured, red curve) of HG(1,0) and HG(3,0) plasmonic beams, respectively.

Fig. 7.
Fig. 7.

“Self-healing” measurements of plasmonic (a) Airy and (b) LCG beams. The white dashed rectangle in the figures depicts the location of the obstacle.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

kSP=kin+kG,
t(z,y)=h02{1+sign[cos(2πΛz+ϕ(y))cos(πq(y))]},
EAiry(y)=Ai(y/y0),
ECG(y)=cos(kysinθ)exp(y2w02)
ELCG(y)=exp(ikysinθ)exp(y2w02)
um,0(y)=Amw0Hm(2yw0)exp(y2w02),

Metrics