Abstract

We have investigated the coupling behaviors between localized and propagating surface plasmon modes in a noncentrosymmetric structure consisting of an L-shaped metal nanoparticle array and a thick metal film, separated by a silica dielectric spacer layer. It is found that surface plasmon modes exhibit hybrid behaviors due to the noncentrosymmetry of the structure. The hybrid surface plasmon modes will interact with different-order localized plasmon modes in the nanoparticle in their spectrally overlapping regions. The strong coupling between the localized and propagating plasmon modes gives rise to the energy anticrossing behavior with large mode splitting. Furthermore, a narrow absorption branch is also observed between two anticrossing absorption branches, which is absent in the centrosymmetric system. The findings hold promise in applications such as photonic and energy conversion systems and the design of novel plasmonic nanodevices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Jain and M. A. Ei-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
    [CrossRef]
  2. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31, 1528–1530 (2006).
    [CrossRef]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  4. S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
    [CrossRef]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef]
  6. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  7. S. A. Maier, Plasmonics: Fundamentals and Application (Springer-Verlag, 2007).
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  9. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
    [CrossRef]
  10. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
    [CrossRef]
  11. D. Brunazzo, E. Descrovi, and O. J. Martin, “Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film,” Opt. Lett. 34, 1405–1407 (2009).
    [CrossRef]
  12. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, and X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21, 10251–10258 (2013).
    [CrossRef]
  13. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007).
    [CrossRef]
  14. J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009).
    [CrossRef]
  15. J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
    [CrossRef]
  16. H. Husu, J. Mäkitalo, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Particle plasmon resonances in L-shaped gold nanoparticles,” Opt. Express 18, 16601–16606 (2010).
    [CrossRef]
  17. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  18. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
    [CrossRef]
  19. T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
    [CrossRef]
  20. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
    [CrossRef]
  21. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef]
  22. J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
    [CrossRef]

2013 (1)

2011 (1)

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[CrossRef]

2010 (2)

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

H. Husu, J. Mäkitalo, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Particle plasmon resonances in L-shaped gold nanoparticles,” Opt. Express 18, 16601–16606 (2010).
[CrossRef]

2009 (3)

J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009).
[CrossRef]

D. Brunazzo, E. Descrovi, and O. J. Martin, “Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film,” Opt. Lett. 34, 1405–1407 (2009).
[CrossRef]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

2008 (3)

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef]

2007 (3)

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

P. K. Jain and M. A. Ei-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

2006 (3)

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31, 1528–1530 (2006).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
[CrossRef]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Balint, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

Brunazzo, D.

Cai, H.

Campoy, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

Chen, J.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[CrossRef]

Christ, A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Dai, Y.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Descrovi, E.

Ding, H.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Economon, E. N.

Ei-Sayed, M. A.

P. K. Jain and M. A. Ei-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

Fainman, Y.

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Fons, C. B.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

Ghaemi, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Giessen, H.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Gippius, N. A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Gong, Q.

J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009).
[CrossRef]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Hicks, E. M.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007).
[CrossRef]

Husu, H.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Jain, P. K.

P. K. Jain and M. A. Ei-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

Kauranen, M.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Koschny, T.

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Kuittinen, M.

Laukkanen, J.

Lee, B. J.

Lezec, H.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, T.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Liu, H.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Llagostera, M.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

Lu, Y.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Application (Springer-Verlag, 2007).

Mäkitalo, J.

Martin, O. J.

Ming, H.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[CrossRef]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

Pan, N.

Pang, L.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Petrov, D.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Raj, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

Rao, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

Ren, W.

Seideman, T.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

Soukoulis, C. M.

Spears, K. G.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007).
[CrossRef]

Sukharev, M.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

Sung, J.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007).
[CrossRef]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Tetz, K. A.

Thio, T.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Van Duyne, R. P.

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007).
[CrossRef]

Wang, F.-M.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Wang, L. P.

Wang, P.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[CrossRef]

Wang, S.-M.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Wang, X.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Wolff, P.

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wu, X.

J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009).
[CrossRef]

Yang, J.

J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009).
[CrossRef]

Yin, X.-G.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Zentgraf, T.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

Zhang, J.

J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009).
[CrossRef]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

Zhang, X.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Zhang, Z. M.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef]

Zhou, J. F.

Zhu, S.-N.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[CrossRef]

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

J. Yang, J. Zhang, X. Wu, and Q. Gong, “Resonant modes of L-shaped gold nanoparticles,” Chin. Phys. Lett. 26, 067802 (2009).
[CrossRef]

J. Phys. Chem. C (3)

J. Sung, M. Sukharev, E. M. Hicks, R. P. Van Duyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112, 3252–3260 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111, 10368–10376 (2007).
[CrossRef]

P. K. Jain and M. A. Ei-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007).
[CrossRef]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (2)

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74, 155435 (2006).
[CrossRef]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009).
[CrossRef]

Phys. Rev. E (1)

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E 84, 026603 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Application (Springer-Verlag, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the noncentrosymmetric metallic photonic slab consisting of an L-shaped gold nanoparticle array positioned on top of a gold film, separated by a dielectric layer with thickness d. Here, Px and Py are the grating periods along the x and y directions. L1 and L2 are the arm lengths of the L-shape. The gold film is considered opaque, with a thickness much greater than the penetration depth of light. A plane wave is incident normally on the structure.

Fig. 2.
Fig. 2.

Reflection spectra for the grating–film structure with incident polarizations along the x, a, and b axes. The geometry parameters are Px=Py=600nm, L1=L2=120nm, and thickness d=40nm.

Fig. 3.
Fig. 3.

Calculated spatial field distributions at normal incidence of light with polarization along the x axis. For the LSP1: (a) the electric field amplitude distribution |(E)| in the XY plane, (b) the magnetic field amplitude distributions |(H)| in the XZ plane and (c) in the YZ plane. For the LSP2: (d) the electric field amplitude distribution |(E)| in the XY plane; (e) the magnetic field amplitude distributions |(H)| in the XZ plane and (f) in the YZ plane. The arrows denote the surface current directions. White lines denote the cross section of the structure.

Fig. 4.
Fig. 4.

Calculated spatial field distributions at normal incidence of light with different polarizations. For the SPP2: (a) the electric field amplitude distribution |(E)| in the XY plane; (b) the magnetic field amplitude distributions |(Hy)| in the XZ plane and (c) |(Hx)| in the YZ plane. For the SPP1: (d) the electric field amplitude distribution |(E)| in the XY plane; (e) the magnetic field amplitude distributions |(Hy)| in the XZ plane and (f) |(Hx)| in the YZ plane.

Fig. 5.
Fig. 5.

Contour plots of the absorptance as a function of spacer layer thickness and wavelength at normal incidence with different incident polarizations. The incident polarization is along the (a) x axis, (b) a axis (c) b axis. The period of the structure is 600 nm. The upper triangles represent the excitation wavelength of the SPP mode predicted from Eq. (1). The lower triangles are the resonant wavelength of the LSP2 mode in the L-shaped metal nanoparticle.

Fig. 6.
Fig. 6.

Contour plots of the absorptance as a function of spacer layer thickness and wavelength at normal incidence with different incident polarizations. The polarization is along the (a) x axis, (b) a axis, (c) b axis. The upper triangles denote the excitation wavelength of the SPP mode predicted from Eq. (1). The lower triangles denote the resonant wavelength of the LSP1 mode in the L-shaped metal nanoparticle.

Fig. 7.
Fig. 7.

Resonant frequencies of the structure as a function of the thickness of spacer layer d. (a) The periods Px=Py=600nm, (b) the periods Px=Py=900nm. The thick lines are the results obtained from Eqs. (4) and (7), and the triangle symbols are obtained from the absorption spectrum as shown in Figs. 5 and 6.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ωcsin(θ)±m2πPx±n2πPy=±β(m=1N;n=1N),
exp(2kz2d)=(1+ε1kz2ε2kz1)(1+ε3kz2ε2kz3)(1ε1kz2ε2kz1)(1ε3kz2ε2kz3),
Heff=(ωSPP(1,0)iγ0V1V10ωSPP(1,0)iγV1V1V1V1ωSPP(0,1)iγ0V1V10ωSPP(0,1)iγ),
E1,2=ωSPPiγ±2V1,E3,4=ωSPPiγ.
|ψ(E1,2)=[±|SPP(1,0),±|SPP(1,0),|SPP(0,1),|SPP(0,1)]T,|ψ(E3)=[0,0,|SPP(0,1),|SPP(0,1)]T,|ψ(E4)=[|SPP(1,0),|SPP(1,0),0,0]T.
Heff=(ωLSPiΓV2V2ωSPPiγ),
ω1,2=ωLSPiΓ+ωSPPiγ2±12[ωLSPωSPPi(Γγ)]2+4V22.

Metrics