Abstract

We propose and analyze a generic technique to engineer the two-photon quantum state generated by spontaneous parametric downconversion (SPDC) in nonlinear photonic nanowires using any suitable material system. Through dispersion engineering in nanowires, the group velocity of each photon involved in the SPDC process can be tuned such that pure heralded single photons or maximally polarization entangled photons can be directly generated on a chip. Implementations in III–V semiconductor and ferroelectric waveguides demonstrate minimal frequency correlations with Schmidt numbers of 1 for heralded single photons, and maximal entanglement with concurrences of 1 for polarization entangled photons.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
    [CrossRef]
  3. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [CrossRef]
  4. E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
    [CrossRef]
  5. J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Opt. 56, 227–331 (2011).
    [CrossRef]
  6. K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
    [CrossRef]
  7. Y. H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A 63, 060301(R) (2001).
    [CrossRef]
  8. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [CrossRef]
  9. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [CrossRef]
  10. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
    [CrossRef]
  11. A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, “Parametric down-conversion,” Exper. Methods Phys. Sci. 45, 351–410 (2013).
    [CrossRef]
  12. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [CrossRef]
  13. T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices,” Laser Photon. Rev. 3, 370–393 (2009).
    [CrossRef]
  14. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
    [CrossRef]
  15. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
    [CrossRef]
  16. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
    [CrossRef]
  17. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [CrossRef]
  18. J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 3368–3370 (2005).
    [CrossRef]
  19. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18, 16206–16216 (2010).
    [CrossRef]
  20. N. Lv, W. Zhang, Y. Guo, Q. Zhou, Y. Huang, and J. Peng, “1.5  μm polarization entanglement generation based on birefringence in silicon wire waveguides,” Opt. Lett. 38, 2873–2876 (2013).
    [CrossRef]
  21. A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [CrossRef]
  22. J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
    [CrossRef]
  23. D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett. 37, 1481–1483 (2012).
    [CrossRef]
  24. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A 85, 013838 (2012).
    [CrossRef]
  25. D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and A. S. Helmy, “Hyperentangled photon sources in semiconductor waveguides,” Phys. Rev. A 89, 023833 (2014).
    [CrossRef]
  26. S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15, 8770–8780 (2007).
    [CrossRef]
  27. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef]
  28. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
    [CrossRef]
  29. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
    [CrossRef]
  30. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
    [CrossRef]
  31. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009).
    [CrossRef]
  32. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [CrossRef]
  33. R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55  μm from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013).
    [CrossRef]
  34. N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
  35. L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38, 1960–1962 (2013).
    [CrossRef]
  36. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [CrossRef]
  37. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
    [CrossRef]
  38. L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34, 2138–2140 (2009).
    [CrossRef]
  39. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  40. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
    [CrossRef]
  41. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  42. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
    [CrossRef]
  43. G. E. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  44. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
    [CrossRef]
  45. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
    [CrossRef]
  46. K. A. Fedorova, A. D. McRobbie, G. S. Sokolovskii, P. G. Schunemann, and E. U. Rafailov, “Second harmonic generation in a low-loss orientation-patterned GaAs waveguide,” Opt. Express 21, 16424–16430 (2013).
    [CrossRef]
  47. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
    [CrossRef]
  48. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
    [CrossRef]
  49. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20, 2974–2981 (2012).
    [CrossRef]
  50. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6, 488–503 (2012).
    [CrossRef]
  51. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
    [CrossRef]
  52. A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.
  53. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
    [CrossRef]
  54. A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
    [CrossRef]

2014 (1)

D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and A. S. Helmy, “Hyperentangled photon sources in semiconductor waveguides,” Phys. Rev. A 89, 023833 (2014).
[CrossRef]

2013 (5)

2012 (9)

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20, 2974–2981 (2012).
[CrossRef]

D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett. 37, 1481–1483 (2012).
[CrossRef]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[CrossRef]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A 85, 013838 (2012).
[CrossRef]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6, 488–503 (2012).
[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

2011 (5)

A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef]

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Opt. 56, 227–331 (2011).
[CrossRef]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[CrossRef]

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
[CrossRef]

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
[CrossRef]

2010 (4)

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18, 16206–16216 (2010).
[CrossRef]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[CrossRef]

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

2009 (6)

2008 (1)

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[CrossRef]

2007 (6)

2006 (2)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

2005 (3)

2002 (2)

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

2001 (2)

Y. H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A 63, 060301(R) (2001).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

2000 (2)

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1997 (2)

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1984 (1)

G. E. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Abolghasem, P.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A 85, 013838 (2012).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

Aimez, V.

Aitchison, J. S.

Apostolopoulos, V.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Arès, R.

Arnold, J. M.

Assanto, G.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Azzini, S.

Baets, R.

Baida, F. I.

Bajoni, D.

Bakhru, H.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
[CrossRef]

Bakhru, S.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
[CrossRef]

Banaszek, K.

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Opt. 56, 227–331 (2011).
[CrossRef]

Beausoleil, R. G.

Bernal, M.-P.

Bijlani, B. J.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

Bimbard, E.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[CrossRef]

Bitauld, D.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Bogaerts, W.

Brown, C. T. A.

Bryce, A. C.

Busacca, A.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Busacca, A. C.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Caccavale, F.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Calleyo, D.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Cemlyn, B.

Cerda-Pons, G.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
[CrossRef]

Chaker, M.

Chen, J.

Cherchi, M.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Christ, A.

A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, “Parametric down-conversion,” Exper. Methods Phys. Sci. 45, 351–410 (2013).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef]

Christodoulides, D. N.

Cichoki, M.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Cino, A. C.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Clark, A.

Clemmen, S.

Cohen, O.

Collet, M.

Courjal, N.

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

De Angelis, C.

Delprat, S.

Djukic, D.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
[CrossRef]

Duchesne, D.

Duligall, J.

Eason, R. W.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Ebrahimzadeh, M.

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef]

Edamatsu, K.

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

Edwards, G. E.

G. E. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Eggleton, B. J.

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[CrossRef]

Emplit, P.

Fan, J.

Fedorova, K. A.

Fedrizzi, A.

A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, “Parametric down-conversion,” Exper. Methods Phys. Sci. 45, 351–410 (2013).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Fiore, A.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Fiorentino, M.

S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15, 8770–8780 (2007).
[CrossRef]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Fujii, G.

Fukuda, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Fulconis, J.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Gaggero, A.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Gali, A.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Galli, M.

Garay-Palmett, K.

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Grassani, D.

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6, 488–503 (2012).
[CrossRef]

Guo, Y.

Halder, M.

Hamhuis, G. J.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Helmy, A. S.

Helt, L. G.

Hendrych, M.

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Hill, S.

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

Horn, R.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6, 488–503 (2012).
[CrossRef]

Huang, Y.

Hübel, H.

A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, “Parametric down-conversion,” Exper. Methods Phys. Sci. 45, 351–410 (2013).
[CrossRef]

Hutchings, D. C.

Huy, K. P.

Inoue, S.

Jahanmiri Nejad, S.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Jain, N.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[CrossRef]

Jeannic, H. L.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Jelezko, F.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

Jennewein, T.

A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, “Parametric down-conversion,” Exper. Methods Phys. Sci. 45, 351–410 (2013).
[CrossRef]

Judge, A. C.

Jugessur, A.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kang, D.

D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and A. S. Helmy, “Hyperentangled photon sources in semiconductor waveguides,” Phys. Rev. A 89, 023833 (2014).
[CrossRef]

D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett. 37, 1481–1483 (2012).
[CrossRef]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A 85, 013838 (2012).
[CrossRef]

Kato, H.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Kim, T.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Kim, Y. H.

Y. H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A 63, 060301(R) (2001).
[CrossRef]

Kleckner, T. C.

Kulik, S. P.

Y. H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A 63, 060301(R) (2001).
[CrossRef]

Kumar, R.

Kurimura, S.

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

Lawrence, M.

G. E. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Légaré, F.

Leoni, R.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Ling, A.

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Liscidini, M.

Locatelli, A.

Lu, H.

Lundeen, J. S.

Lv, N.

Lvovsky, A. I.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[CrossRef]

MacRae, A.

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Mailis, S.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Makino, T.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Marsh, J. H.

Marshall, G. D.

Marsili, F.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Massar, S.

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

Matsuda, N.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Mattioli, F.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

McGuinness, H. J.

McKinstrie, C. J.

McRobbie, A. D.

Meier, J.

Migdall, A.

Mizuochi, N.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Modotto, D.

Mohammed, W. S.

Mojahedi, M.

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

Mookherjea, S.

Morandotti, R.

Morbiato, A.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef]

Motoya, M.

Moutzouris, K.

Munro, W. J.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

Namekata, N.

Neumann, P.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Nothaft, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Nötzel, R.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Ogura, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Okushi, H.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Olislager, L.

Ong, J. R.

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

Osgood, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
[CrossRef]

Parisi, A.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Pearlman, A. J.

Peng, J.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6, 488–503 (2012).
[CrossRef]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[CrossRef]

Qian, L.

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

Radic, S.

Rafailov, E. U.

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

Rangel-Rojo, R.

Rarity, J. G.

Raymer, M. G.

Recchio, J.

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Roth, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
[CrossRef]

Russell, P. St. J.

Rutkowska, K. A.

Sadani, B.

Safioui, J.

Sahin, D.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Salamo, G.

Sanjines, R.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

Sanseverino, S. R.

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Schunemann, P. G.

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Shi, X.

Shih, Y.

Y. H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A 63, 060301(R) (2001).
[CrossRef]

Shimizu, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Silberhorn, C.

A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, “Parametric down-conversion,” Exper. Methods Phys. Sci. 45, 351–410 (2013).
[CrossRef]

Silberhorn, Ch.

A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef]

Sipe, J. E.

D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and A. S. Helmy, “Hyperentangled photon sources in semiconductor waveguides,” Phys. Rev. A 89, 023833 (2014).
[CrossRef]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A 85, 013838 (2012).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18, 16206–16216 (2010).
[CrossRef]

L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34, 2138–2140 (2009).
[CrossRef]

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[CrossRef]

Smith, N.

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6, 488–503 (2012).
[CrossRef]

Sokolovskii, G. S.

Sones, C. L.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Sorel, M.

Spillane, S. M.

Srinivasan, K.

Stanley, C. R.

Steel, M. J.

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

Stenger, V.

Strain, M. J.

Suhara, T.

T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices,” Laser Photon. Rev. 3, 370–393 (2009).
[CrossRef]

Svozilík, J.

Takesue, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Takeuchi, D.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Tokura, Y.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Torres, J. P.

D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and A. S. Helmy, “Hyperentangled photon sources in semiconductor waveguides,” Phys. Rev. A 89, 023833 (2014).
[CrossRef]

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
[CrossRef]

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Opt. 56, 227–331 (2011).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

Tsuchizawa, T.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

U’Ren, A. B.

Ulliac, G.

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

Volatier, M.

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Wadsworth, W. J.

Walmsley, I. A.

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Opt. 56, 227–331 (2011).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Wang, L. J.

Weihs, G.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

Wrachtrup, J.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Xiong, C.

Yamada, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Yamasaki, S.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

Yang, Z.

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zhang, W.

Zhou, Q.

Zhu, E. Y.

Zhukovsky, S. V.

D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and A. S. Helmy, “Hyperentangled photon sources in semiconductor waveguides,” Phys. Rev. A 89, 023833 (2014).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A 85, 013838 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97, 151108 (2010).
[CrossRef]

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90, 171116 (2007).
[CrossRef]

Exper. Methods Phys. Sci. (1)

A. Christ, A. Fedrizzi, H. Hübel, T. Jennewein, and C. Silberhorn, “Parametric down-conversion,” Exper. Methods Phys. Sci. 45, 351–410 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys. 46, 7175–7187 (2007).
[CrossRef]

Laser Photon. Rev. (1)

T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices,” Laser Photon. Rev. 3, 370–393 (2009).
[CrossRef]

Laser Photonics Rev. (1)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6, 488–503 (2012).
[CrossRef]

Nat. Photonics (3)

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6, 299–303 (2012).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nat. Photonics 4, 243–247 (2010).
[CrossRef]

Nature (2)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef]

Opt. Express (13)

S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15, 8770–8780 (2007).
[CrossRef]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
[CrossRef]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009).
[CrossRef]

J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18, 16206–16216 (2010).
[CrossRef]

J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011).
[CrossRef]

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
[CrossRef]

H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, “Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film,” Opt. Express 20, 2974–2981 (2012).
[CrossRef]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[CrossRef]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[CrossRef]

K. A. Fedorova, A. D. McRobbie, G. S. Sokolovskii, P. G. Schunemann, and E. U. Rafailov, “Second harmonic generation in a low-loss orientation-patterned GaAs waveguide,” Opt. Express 21, 16424–16430 (2013).
[CrossRef]

Opt. Lett. (8)

N. Lv, W. Zhang, Y. Guo, Q. Zhou, Y. Huang, and J. Peng, “1.5  μm polarization entanglement generation based on birefringence in silicon wire waveguides,” Opt. Lett. 38, 2873–2876 (2013).
[CrossRef]

R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55  μm from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013).
[CrossRef]

L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38, 1960–1962 (2013).
[CrossRef]

J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 3368–3370 (2005).
[CrossRef]

D. Kang and A. S. Helmy, “Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides,” Opt. Lett. 37, 1481–1483 (2012).
[CrossRef]

A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett. 25, 1370–1372 (2000).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34, 2138–2140 (2009).
[CrossRef]

Opt. Quantum Electron. (1)

G. E. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev. A (7)

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Generation of maximally-polarization-entangled photons on a chip,” Phys. Rev. A 85, 013838 (2012).
[CrossRef]

D. Kang, L. G. Helt, S. V. Zhukovsky, J. P. Torres, J. E. Sipe, and A. S. Helmy, “Hyperentangled photon sources in semiconductor waveguides,” Phys. Rev. A 89, 023833 (2014).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Y. H. Kim, S. P. Kulik, and Y. Shih, “Bell-state preparation using pulsed nondegenerate two-photon entanglement,” Phys. Rev. A 63, 060301(R) (2001).
[CrossRef]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[CrossRef]

Phys. Rev. Lett. (5)

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pair,” Phys. Rev. Lett. 108, 153605 (2012).
[CrossRef]

A. Eckstein, A. Christ, P. J. Mosley, and Ch. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[CrossRef]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle Bosonic-Fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108, 010502 (2012).
[CrossRef]

Prog. Opt. (1)

J. P. Torres, K. Banaszek, and I. A. Walmsley, “Engineering nonlinear optic sources of photonic entanglement,” Prog. Opt. 56, 227–331 (2011).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[CrossRef]

Sci. Rep. (1)

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Other (1)

A. Busacca, M. Cherchi, S. R. Sanseverino, A. C. Cino, A. Parisi, G. Assanto, M. Cichoki, F. Caccavale, D. Calleyo, and A. Morbiato, “Surface periodic poling in lithium niobate and lithium tantalate,” in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 126–130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Dependences of group velocities on the core thickness for a slab waveguide consisting of a core of Al0.4Ga0.6 As and claddings of air.

Fig. 2.
Fig. 2.

Schematics of (a) AlxGa1x As and (b) lithium niobate waveguides in consideration. Both structures utilize QPM and support type-II SPDC processes.

Fig. 3.
Fig. 3.

Dependences of group velocities on the width for an AlxGa1x As ridge waveguide.

Fig. 4.
Fig. 4.

JSI of the generated photon pairs in an AlxGa1x As ridge waveguide using 500 fs pump pulses. The corresponding Schmidt number is 1.05.

Fig. 5.
Fig. 5.

Group velocities of the downconverted modes as functions of the core thickness, for an AlxGa1x As waveguide with a width of 3 μm.

Fig. 6.
Fig. 6.

Dependence of the core thickness on the waveguide width that satisfies zero GVM between the downconverted modes for an AlxGa1x As waveguide.

Fig. 7.
Fig. 7.

(a) Spectral intensities and (b) corresponding phases of the downconverted photons generated in an AlxGa1x As waveguide with a core thickness of 529 nm and width W=3μm using a CW pump.

Fig. 8.
Fig. 8.

Dependences of group velocities on the width for a PPLN waveguide with a core thickness of 1 μm.

Fig. 9.
Fig. 9.

Joint spectral intensities of the generated photon pairs in a PPLN waveguide with a core thickness of 1 μm (a) using 200 fs pump pulses when W1.12μm, and (b) using 1.7 ps pump pulses when W0.71μm. The corresponding Schmidt numbers are 1.05 and 1.18, respectively.

Fig. 10.
Fig. 10.

Dependences of group velocities on the width for a PPLN waveguide with a core thickness of 0.5 μm.

Fig. 11.
Fig. 11.

(a) Spectral intensities and (b) corresponding phases of the downconverted photons generated in a PPLN waveguide with a core thickness of 0.5 μm and width W=1.76μm using a CW pump.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H=α,β,γdω1dω2dωSαβγ(ω1,ω2,ω)aαω1daβω2daγωp+H.c.,
|II=12dω1dω2α,βϕαβ(ω1,ω2)aαd(ω1)aβd(ω2)|vac
ϕαβ(ω1,ω2)ϕP(ω1+ω2)sinc(ΔkαβL2)exp(iΔkαβL2),
kσm(ω)=kσm(ωm0)+ωωm0vσmλm024πcDσm(ωωm0)2,
ϕαβ(ω1,ω2)=ϕ1(ω1)ϕ2(ω2).
vαdvγpvβd,orvβdvγpvαd.
K=1npn2
|II=12dω1dω2[ϕHV(ω1,ω2)|ω1H;ω2V+ϕVH(ω1,ω2)|ω1V;ω2H],
|II0ω0dω1ω0dω2[ϕHV(ω1,ω2)|ω1H;ω2V+ϕVH(ω1,ω2)|ω1V;ω2H].
ϕHV(ω1,ω2)=ϕVH(ω1,ω2),
ϕHV(ω1,ω2)=ϕHV(ω2,ω1).
C=2|0ω0dω1ω0dω2ϕHV(ω1,ω2)ϕVH*(ω1,ω2)|,
0ω0dω1ω0dω2[|ϕHV(ω1,ω2)|2+|ϕVH(ω1,ω2)|2]=1.

Metrics