Abstract

Organic nonlinear optical materials are widely investigated materials for fabricating optoelectronic devices. Particularly organic π-conjugated systems as well as transition metal complex compounds are studied in this direction because of the strong electronic coupling between the ligand and the metal, their excellent chemical stability, and their rich photochemical and photophysical properties. In this work, comparative studies of the third-order nonlinear optical susceptibilities of a bipyridine ligand (4-(N,N-dibutylamino)-4-(5-ethynyl-2,2-bipyridine)-azobenzene (A) and of the corresponding heteroleptic ruthenium complex (Ru(bpy)2(La)(PF6)2 (B) (La signifies the ligand) are presented. The NLO properties were investigated by means of the Z-scan technique using a 30 ps mode-locked Nd-YVO4 laser at 532 nm with a repetition rate of 10 Hz. Our results show that the introduction of the metal in the organic complex results in a significant modification of the third-order nonlinear optical response.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
    [CrossRef]
  2. O. Maury and H. Le Bozec, “Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes,” Acc. Chem. Res. 38, 691–704 (2005).
    [CrossRef]
  3. K. Iliopoulos, A. El-Ghayoury, H. El. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
    [CrossRef]
  4. B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).
  5. S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000).
    [CrossRef]
  6. W. P. Griffith, Ruthenium Oxidation Complexes: Their Uses as Homogenous Organic Catalysts (Springer, 2010).
  7. L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).
  8. P. C. A. Bruijnincx and P. J. Sadler, “Controlling platinum, ruthenium and osmium reactivity for anticancer drug design,” Adv. Inorg. Chem. 61, 1–62 (2009).
  9. A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
    [CrossRef]
  10. A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
    [CrossRef]
  11. C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998).
    [CrossRef]
  12. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  13. P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
    [CrossRef]
  14. K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
    [CrossRef]
  15. J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
    [CrossRef]
  16. J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
    [CrossRef]
  17. J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
    [CrossRef]
  18. J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
    [CrossRef]
  19. K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
    [CrossRef]
  20. P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
    [CrossRef]
  21. T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006).
    [CrossRef]
  22. W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
    [CrossRef]
  23. K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002).
    [CrossRef]
  24. K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
    [CrossRef]

2014

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

2013

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

2012

2011

G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
[CrossRef]

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

2010

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

2009

P. C. A. Bruijnincx and P. J. Sadler, “Controlling platinum, ruthenium and osmium reactivity for anticancer drug design,” Adv. Inorg. Chem. 61, 1–62 (2009).

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

2007

J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
[CrossRef]

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

2006

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006).
[CrossRef]

2005

O. Maury and H. Le Bozec, “Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes,” Acc. Chem. Res. 38, 691–704 (2005).
[CrossRef]

2003

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

2002

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002).
[CrossRef]

2000

S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000).
[CrossRef]

A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef]

1998

C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998).
[CrossRef]

1997

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

1996

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Akasaka, T.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

Akdas-Kilig, H.

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

Aloukos, P.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

Anyfantis, G. C.

G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
[CrossRef]

Araki, K.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

Arca, M.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006).
[CrossRef]

Avarvari, N.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

Balandier, J.-Y.

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Baracat, M. M.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Belhadj, E.

Belmabrouk, H.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

Bonifazi, D.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

Boucekkine, A.

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

Branzea, D.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

Bräuchle, C.

C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998).
[CrossRef]

Bruijnincx, P. C. A.

P. C. A. Bruijnincx and P. J. Sadler, “Controlling platinum, ruthenium and osmium reactivity for anticancer drug design,” Adv. Inorg. Chem. 61, 1–62 (2009).

Casagrande, R.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Cassano, T.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006).
[CrossRef]

Chas, M.

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Chatzikyriakos, G.

G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
[CrossRef]

Couris, S.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
[CrossRef]

Czaplicki, R.

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

da França, L. G.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

da Silva, F. O. N.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Devillanova, F. A.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006).
[CrossRef]

Dick, B.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

Dössel, K.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

El-Ghayoury, A.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

K. Iliopoulos, A. El-Ghayoury, H. El. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
[CrossRef]

Fillaut, J.-L.

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

Fuhr, O.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

Fukuzumi, S.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

Garber, S. B.

S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000).
[CrossRef]

Gatri, R.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

Georgetti, S. R.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Gherab, K. N.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

Gindre, D.

K. Iliopoulos, A. El-Ghayoury, H. El. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
[CrossRef]

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Goeb, S.

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Grätzel, M.

A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef]

Gray, B. L.

S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000).
[CrossRef]

Griffith, W. P.

W. P. Griffith, Ruthenium Oxidation Complexes: Their Uses as Homogenous Organic Catalysts (Springer, 2010).

Guezguez, I.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

Guldi, D. M.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

Guo, W. F.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hagfeldt, A.

A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef]

Hamada, Y.

J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
[CrossRef]

Hank, Z.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

Hoveyda, A. H.

S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000).
[CrossRef]

Iizaki, T.

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

Iliopoulos, K.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

K. Iliopoulos, A. El-Ghayoury, H. El. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
[CrossRef]

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Imai, A.

J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
[CrossRef]

Kerasidou, A. P.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

Kingsbury, J. S.

S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000).
[CrossRef]

Kurihara, I.

J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
[CrossRef]

Kutta, R.-J.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

Lambert, C.

C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998).
[CrossRef]

Latouche, C.

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

Le Bozec, H.

O. Maury and H. Le Bozec, “Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes,” Acc. Chem. Res. 38, 691–704 (2005).
[CrossRef]

Löhneysen, H. V.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

Luc, J.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

Lukas, M.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

Mateo-Alonso, A.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

Matuoka, M. L.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Maury, O.

O. Maury and H. Le Bozec, “Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes,” Acc. Chem. Res. 38, 691–704 (2005).
[CrossRef]

Mayor, M.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

Mazari, M.

Meerholz, K.

C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998).
[CrossRef]

Meghea, A.

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

Migalska-Zalas, A.

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

Mizokami, S. S.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Nagaswaran, P. G.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

Nampoori, V. P. N.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002).
[CrossRef]

Nita, G.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

Okuda, N.

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

Omokawa, N.

J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
[CrossRef]

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

Otsuki, J.

J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
[CrossRef]

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

Ouazzani, H. El.

K. Iliopoulos, A. El-Ghayoury, H. El. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
[CrossRef]

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Papagiannouli, I.

G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
[CrossRef]

Papavassiliou, G. C.

G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
[CrossRef]

Pavanelli, W. R.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Pranaitis, M.

Prato, M.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

Ren, Q.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Ripaud, E.

Roisnel, T.

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

Sadler, P. J.

P. C. A. Bruijnincx and P. J. Sadler, “Controlling platinum, ruthenium and osmium reactivity for anticancer drug design,” Adv. Inorg. Chem. 61, 1–62 (2009).

Sahraoui, B.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

K. Iliopoulos, A. El-Ghayoury, H. El. Ouazzani, M. Pranaitis, E. Belhadj, E. Ripaud, M. Mazari, M. Sallé, D. Gindre, and B. Sahraoui, “Nonlinear absorption reversing between an electroactive ligand and its metal complexes,” Opt. Express 20, 25311–25316 (2012).
[CrossRef]

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Salle, M.

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Sallé, M.

Sato, K.

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

Savel, P.

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

Schmälzlin, E.

C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998).
[CrossRef]

Schramm, A.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

Seno, M.

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Silva, J. J.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Sooambar, C.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

Sousa, E. H. S.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Staurengo-Ferrari, L.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Stroh, C.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

Suenobu, T.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

Sun, J.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Sun, X. B.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Takatera, K.

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

Takido, T.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

Thomas, J.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002).
[CrossRef]

Tommasi, R.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006).
[CrossRef]

Tsujino, M.

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

Unnikrishnan, K. P.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002).
[CrossRef]

Vallabhan, C. P. G.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Verri, W. A.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Wang, X. Q.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Watanabe, T.

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Winter, R.

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

Xu, D.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Yoshiba, K.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

Yoshikawa, I.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

Zhang, G. H.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Acc. Chem. Res.

A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef]

O. Maury and H. Le Bozec, “Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes,” Acc. Chem. Res. 38, 691–704 (2005).
[CrossRef]

Adv. Inorg. Chem.

P. C. A. Bruijnincx and P. J. Sadler, “Controlling platinum, ruthenium and osmium reactivity for anticancer drug design,” Adv. Inorg. Chem. 61, 1–62 (2009).

Appl. Phys. B

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B 75, 871–874 (2002).
[CrossRef]

Appl. Phys. Lett.

K. Iliopoulos, R. Czaplicki, H. El. Ouazzani, J.-Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett. 97, 101104 (2010).
[CrossRef]

Bull. Chem. Soc. Jpn.

J. Otsuki, I. Kurihara, A. Imai, Y. Hamada, and N. Omokawa, “6,6-Azobis(2,2′-bipyridine) and its dinuclear ruthenium complex: a comparative study with positional isomers,” Bull. Chem. Soc. Jpn. 80, 902–909 (2007).
[CrossRef]

Chem. Commun.

A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. V. Löhneysen, and M. Mayor, “Isolated facial and meridional tris(bipyridine)Ru(ii) for STM studies on Au(111),” Chem. Commun. 49, 1076–1078 (2013).
[CrossRef]

Chem. Lett.

J. Otsuki, K. Sato, M. Tsujino, N. Okuda, K. Araki, and M. Seno, “Ruthenium complexes containing an azobipyridine ligand as redox-responsive molecular switches,” Chem. Lett. 25, 847–848 (1996).
[CrossRef]

Chem. Phys. Lett.

G. Chatzikyriakos, I. Papagiannouli, S. Couris, G. C. Anyfantis, and G. C. Papavassiliou, “Nonlinear optical response of a symmetrical Au dithiolene complex under ps and ns laser excitation in the infrared and in the visible,” Chem. Phys. Lett. 513, 229–235 (2011).
[CrossRef]

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett. 435, 65–68 (2007).
[CrossRef]

Chem.—Eur. J.

C. Lambert, E. Schmälzlin, K. Meerholz, and C. Bräuchle, “Synthesis and nonlinear optical properties of three-dimensional phosphonium ion chromophores,” Chem.—Eur. J. 4, 512–521 (1998).
[CrossRef]

Dalton Trans.

P. Savel, C. Latouche, T. Roisnel, H. Akdas-Kilig, A. Boucekkine, and J.-L. Fillaut, “Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode,” Dalton Trans. 42, 16773–16783 (2013).
[CrossRef]

Dyes Pigm.

K. Iliopoulos, I. Guezguez, A. P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, and B. Sahraoui, “Effect of metal cation complexation on the nonlinear optical response of an electroactive bisiminopyridine ligand,” Dyes Pigm. 101, 229–233 (2014).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Inorg. Chem.

J. Otsuki, N. Omokawa, K. Yoshiba, I. Yoshikawa, T. Akasaka, T. Suenobu, T. Takido, K. Araki, and S. Fukuzumi, “Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with Azobis(2,2′-bipyridine)s,” Inorg. Chem. 42, 3057–3066 (2003).
[CrossRef]

J. Am. Chem. Soc.

J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, and T. Watanabe, “Redox-responsive molecular switch for intramolecular energy transfer,” J. Am. Chem. Soc. 119, 7895–7896 (1997).
[CrossRef]

S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, “Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts,” J. Am. Chem. Soc. 122, 8168–8179 (2000).
[CrossRef]

J. Mater. Chem.

P. Aloukos, K. Iliopoulos, S. Couris, D. M. Guldi, C. Sooambar, A. Mateo-Alonso, P. G. Nagaswaran, D. Bonifazi, and M. Prato, “Photophysics and transient nonlinear optical response of donor–[60]fullerene hybrids,” J. Mater. Chem. 21, 2524–2534 (2011).
[CrossRef]

K. N. Gherab, R. Gatri, Z. Hank, B. Dick, R.-J. Kutta, R. Winter, J. Luc, B. Sahraoui, and J.-L. Fillaut, “Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides,” J. Mater. Chem. 20, 2858–2864 (2010).
[CrossRef]

J. Opt. Pure Appl. Opt.

B. Sahraoui, J. Luc, A. Meghea, R. Czaplicki, J.-L. Fillaut, and A. Migalska-Zalas, “Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes,” J. Opt. Pure Appl. Opt. 11, 024005 (2009).

J. Phys. Condens. Matter

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter 18, 5279–5290 (2006).
[CrossRef]

Opt. Express

Pharmacol. Biochem. Behav.

L. Staurengo-Ferrari, S. S. Mizokami, J. J. Silva, F. O. N. da Silva, E. H. S. Sousa, L. G. da França, M. L. Matuoka, S. R. Georgetti, M. M. Baracat, R. Casagrande, W. R. Pavanelli, and W. A. Verri, “The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway,” Pharmacol. Biochem. Behav. 105, 157–165 (2013).

Other

W. P. Griffith, Ruthenium Oxidation Complexes: Their Uses as Homogenous Organic Catalysts (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Chemical structures of the studied ligand (A) and of the corresponding ruthenium complex (B).

Fig. 2.
Fig. 2.

Characteristic divided Z-scan obtained for (a) molecular system A (1.50 mM in DCM) and (b) molecular system B (0.25 mM in DCM).

Fig. 3.
Fig. 3.

Characteristic OA Z-scans for (a) ligand (0.50 mM in DCM) and (b) Ru complex (0.25 mM in DCM).

Fig. 4.
Fig. 4.

ΔTpv as a function of the incident energy laser for different concentrations of the ligand A.

Fig. 5.
Fig. 5.

Reχ(3) as a function of concentration for the ligand A.

Fig. 6.
Fig. 6.

Imχ(3) as a function of the concentration for (a) ligand and (b) Ru complex.

Tables (3)

Tables Icon

Table 1. Characteristic Molar Absorption Coefficients of the Investigated Samples A and B

Tables Icon

Table 2. Nonlinear Optical Parameters of the Ligand A (DCM Solutions) Determined by Means of the Z-scan Technique (532 nm, 30 ps)

Tables Icon

Table 3. Nonlinear Optical Parameters of the Ru Complex B (DCM Solutions) Determined by Means of the Z-Scan Technique (532 nm, 30 ps)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=m=0[βI0Leff/(1+z2/z02)]m(m+1)3/2T=14ΔΦ0(z/z0)((z/z0)2+9)((z/z0)2+1),
Reχ(3)(esu)=106cn02480π2γ(cm2W1)Imχ(3)(esu)=107c2n0296π2ωβ(cmW1),
γ=χ(3)NL4,

Metrics