Abstract

The performance of a multimaterial loop (MML) metasurface integrated with Kerr nonlinear material as the dielectric spacer layer is investigated comprehensively with the finite-difference time-domain method. Optical bistability is obtained by exciting the metasurface with a saw-tooth profile for its amplitude. Based on effects of coupling between the plasmonic loops on the performance of the MML metasurface, it is shown that there is a trade-off between the required input intensity for switching and the extinction ratio of the two states of the switch. Two distinct designs are proposed where in the second design, which has lower coupling, the extinction ratio is increased by a factor of 2 while the required intensity for switching is 13 times higher than that of the first design.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
    [CrossRef]
  2. R. Boyd, Nonlinear Optics (Academic, 2003).
  3. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [CrossRef]
  4. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  5. T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry–Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
    [CrossRef]
  6. M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003).
    [CrossRef]
  7. V. G. Arkhipkin and S. A. Myslivets, “All-optical transistor using a photonic-crystal cavity with an active Raman gain medium,” Phys. Rev. A 88, 033847 (2013).
    [CrossRef]
  8. B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, and A. R. Maleki Javan, “All-optical NOR gate based on nonlinear photonic crystal microring resonators,” J. Opt. Soc. Am. B 26, 1097–1102 (2009).
    [CrossRef]
  9. Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
    [CrossRef]
  10. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
    [CrossRef]
  11. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
    [CrossRef]
  12. P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
    [CrossRef]
  13. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
    [CrossRef]
  14. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
    [CrossRef]
  15. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2, 125–135 (2008).
    [CrossRef]
  16. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
    [CrossRef]
  17. J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
    [CrossRef]
  18. N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, “Plasmonic grating as a nonlinear converter-coupler,” Opt. Express 20, 1392–1405 (2012).
    [CrossRef]
  19. A. V. Krasavin, S. Randhawa, J.-S. Bouillard, J. Renger, R. Quidant, and A. V. Zayats, “Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry,” Opt. Express 19, 25222–25229 (2011).
    [CrossRef]
  20. B. Memarzadeh and H. Mosallaei, “Multimaterial loops as the building block for a functional metasurface,” J. Opt. Soc. Am. B 30, 1827–1834 (2013).
    [CrossRef]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  22. I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011).
    [CrossRef]
  23. H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
    [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2013

V. G. Arkhipkin and S. A. Myslivets, “All-optical transistor using a photonic-crystal cavity with an active Raman gain medium,” Phys. Rev. A 88, 033847 (2013).
[CrossRef]

B. Memarzadeh and H. Mosallaei, “Multimaterial loops as the building block for a functional metasurface,” J. Opt. Soc. Am. B 30, 1827–1834 (2013).
[CrossRef]

2012

N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, “Plasmonic grating as a nonlinear converter-coupler,” Opt. Express 20, 1392–1405 (2012).
[CrossRef]

Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

2011

I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011).
[CrossRef]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

A. V. Krasavin, S. Randhawa, J.-S. Bouillard, J. Renger, R. Quidant, and A. V. Zayats, “Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry,” Opt. Express 19, 25222–25229 (2011).
[CrossRef]

2010

P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

2009

2008

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2, 125–135 (2008).
[CrossRef]

2007

C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Optical bistability in subwavelength metallic grating coated by nonlinear material,” Opt. Express 15, 12368–12373 (2007).
[CrossRef]

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

2003

1979

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry–Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Ahamdi Tameh, T.

Alù, A.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

Arkhipkin, V. G.

V. G. Arkhipkin and S. A. Myslivets, “All-optical transistor using a photonic-crystal cavity with an active Raman gain medium,” Phys. Rev. A 88, 033847 (2013).
[CrossRef]

Bischofberger, T.

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry–Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

Blanchard, R.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Bouillard, J.-S.

Boyd, R.

R. Boyd, Nonlinear Optics (Academic, 2003).

Capasso, F.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

D’Aguanno, G.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

Deng, Y.

Engheta, N.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

Fan, S.

Gatzogiannis, E.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Genevet, P.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

Granpayeh, N.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

Jiao, X.

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kats, M. A.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

Khunsin, W.

Kivshar, Y. S.

I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011).
[CrossRef]

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

Krasavin, A. V.

Lavrinenko, A. V.

I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011).
[CrossRef]

Maksymov, I. S.

I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011).
[CrossRef]

Maleki Javan, A. R.

Memarzadeh, B.

Memarzadeh Isfahani, B.

Min, C.

Ming, H.

Mosallaei, H.

B. Memarzadeh and H. Mosallaei, “Multimaterial loops as the building block for a functional metasurface,” J. Opt. Soc. Am. B 30, 1827–1834 (2013).
[CrossRef]

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

Myslivets, S. A.

V. G. Arkhipkin and S. A. Myslivets, “All-optical transistor using a photonic-crystal cavity with an active Raman gain medium,” Phys. Rev. A 88, 033847 (2013).
[CrossRef]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

Quidant, R.

Randhawa, S.

Renger, J.

Salgueiro, J. R.

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

Scully, M. O.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Shahabadi, M.

Shen, Y. R.

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry–Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

Soljacic, M.

Sukhorukov, A. A.

I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Talebi, N.

Tetienne, J.-P.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Vogelgesang, R.

Wang, P.

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2, 125–135 (2008).
[CrossRef]

Yanik, M. F.

Zang, Z.

Zang, Z.-G.

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

A. V. Krasavin, S. Randhawa, J.-S. Bouillard, J. Renger, R. Quidant, and A. V. Zayats, “Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry,” Opt. Express 19, 25222–25229 (2011).
[CrossRef]

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2, 125–135 (2008).
[CrossRef]

Zhang, Y.

Zhang, Y.-J.

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. R. Salgueiro and Y. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

IEEE Antennas Wireless Propag. Lett.

I. S. Maksymov, A. A. Sukhorukov, A. V. Lavrinenko, and Y. S. Kivshar, “Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities,” IEEE Antennas Wireless Propag. Lett. 10, 143–146 (2011).
[CrossRef]

IEEE Trans. Electromagn. Compat.

H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007).
[CrossRef]

J. Mod. Opt.

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2, 125–135 (2008).
[CrossRef]

Nano Lett.

P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Nat. Nanotechnol.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[CrossRef]

Nat. Photonics

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry–Perot interferrometer,” Phys. Rev. A 19, 1169–1176 (1979).
[CrossRef]

V. G. Arkhipkin and S. A. Myslivets, “All-optical transistor using a photonic-crystal cavity with an active Raman gain medium,” Phys. Rev. A 88, 033847 (2013).
[CrossRef]

Phys. Rev. B

P.-Y. Chen and A. Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405 (2010).
[CrossRef]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85, 045129 (2012).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Science

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

Other

R. Boyd, Nonlinear Optics (Academic, 2003).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the MML metasurface building block. (b) The transmission coefficient of the metasurface with the parameters of R1=125nm, R2=95nm, R3=75nm, R4=65nm, and H=20nm. The electric field distribution at two resonances at (c) 125 THz and (d) 245 THz.

Fig. 2.
Fig. 2.

Envelope of the incident and transmitted light amplitude elucidating a nonlinear transmission through the metasurface.

Fig. 3.
Fig. 3.

Obtained bistability curve for three different pulse widths of 10, 20, and 30 ps. The convergence is achieved by the 30 ps pulse width.

Fig. 4.
Fig. 4.

(a) Transmission coefficient for two values of spacer layer permittivity. The blue curve is for εr=2.25 and the red curve is for εr=3.5. (b) The triangles show the transmission amplitude at the resonance and the rectangles show the maximum field enhancement at the first resonance for different values of R2 between 95 and 105 nm.

Fig. 5.
Fig. 5.

Bistability curve for the design with R2=105nm. The coupling between the plasmonic loops is decreased. Hence, the required input intensity for switching is 13 times higher compared to the design with R2=95nm. However, the extinction ratio is doubled.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

εNL=εL+χ(3)|E|2.
ωresω0γ>3.
D⃗=ε0εLE⃗+ε0χ(3)|E⃗|2E⃗,
E⃗m+1=D⃗n+1ε0εL+ε0χ(3)|E⃗m|2,
Einc(t)=E0(1|2tT1|)sin(ω0t)for0<t<T,

Metrics