Abstract

We propose an efficient and compact plasmonic surface-enhanced terahertz generation scheme based on nonlinear difference-frequency generation inside a metal–insulator–metal structure. Gold nanowire arrays are planted on top of the surface of a lithium niobate (LN) substrate with second-order nonlinearity to enhance both the nonlinear wavelength conversion and waveguide terahertz waves at the same time. Our numerical simulations show that our structures are capable of generating both tunable continuous and ultrafast-pulsed terahertz sources. We also discuss further improvements on the conversion efficiency by combining with Ti-diffusing LN waveguides.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “THz instruments for space,” IEEE Trans. Antennas Propag. 55, 2957–2965 (2007).
    [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).
    [CrossRef]
  3. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  4. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
    [CrossRef]
  5. E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001).
    [CrossRef]
  6. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  7. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005).
    [CrossRef]
  8. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
    [CrossRef]
  9. S. Kumar, Q. Hu, and J. L. Reno, “186  K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
    [CrossRef]
  10. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
    [CrossRef]
  11. P. U. Jepsen, R. Jacobsen, and S. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
    [CrossRef]
  12. J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. lett. 97, 103903 (2006).
    [CrossRef]
  13. T. Wang, S. Lin, Y. Lin, A. Chiang, and Y. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008).
    [CrossRef]
  14. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035  nm,” Opt. Express 15, 11706–11713 (2007).
    [CrossRef]
  15. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604–1610 (2006).
    [CrossRef]
  16. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010).
    [CrossRef]
  17. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
    [CrossRef]
  18. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [CrossRef]
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  20. G. Ramakrishnan, N. Kumar, P. C. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20, 4067–4073 (2012).
    [CrossRef]
  21. B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [CrossRef]
  22. C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
    [CrossRef]
  23. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
    [CrossRef]
  24. D. Bosomworth, “The far infrared optical properties of LiNbO3,” Appl. Phys. Lett. 9, 330–331 (1966).
    [CrossRef]
  25. K. Suizu, T. Shibuya, T. Akiba, T. Tutui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008).
    [CrossRef]
  26. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
    [CrossRef]
  27. Y. Zhang, X. Zhang, T. Mei, and M. Fiddy, “Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases,” Opt. Express 18, 12213–12225 (2010).
    [CrossRef]
  28. Lumerical Computational Solutions Inc., “FDTD solutions,” https://www.lumerical.com/tcad-products/fdtd/ .
  29. R. W. Boyd, Nonlinear Optics (Academic, 2010), Chap. 1.
  30. H. Hirori, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
    [CrossRef]
  31. G. Xu, X. Mu, Y. J. Ding, and I. B. Zotova, “Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate,” Opt. Lett. 34, 995–997 (2009).
    [CrossRef]
  32. R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
    [CrossRef]
  33. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
    [CrossRef]

2012 (2)

R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
[CrossRef]

G. Ramakrishnan, N. Kumar, P. C. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20, 4067–4073 (2012).
[CrossRef]

2011 (2)

H. Hirori, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

2010 (3)

2009 (3)

2008 (4)

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

T. Wang, S. Lin, Y. Lin, A. Chiang, and Y. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008).
[CrossRef]

K. Suizu, T. Shibuya, T. Akiba, T. Tutui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008).
[CrossRef]

2007 (5)

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035  nm,” Opt. Express 15, 11706–11713 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

P. H. Siegel, “THz instruments for space,” IEEE Trans. Antennas Propag. 55, 2957–2965 (2007).
[CrossRef]

2006 (2)

J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. lett. 97, 103903 (2006).
[CrossRef]

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604–1610 (2006).
[CrossRef]

2005 (1)

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005).
[CrossRef]

2003 (2)

2002 (3)

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).
[CrossRef]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

2001 (1)

E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001).
[CrossRef]

1997 (1)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

1996 (1)

1966 (1)

D. Bosomworth, “The far infrared optical properties of LiNbO3,” Appl. Phys. Lett. 9, 330–331 (1966).
[CrossRef]

Akiba, T.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bartoli, F. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

Blanchard, F.

H. Hirori, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Bonn, M.

E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001).
[CrossRef]

Bosomworth, D.

D. Bosomworth, “The far infrared optical properties of LiNbO3,” Appl. Phys. Lett. 9, 330–331 (1966).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2010), Chap. 1.

Chen, R.

R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
[CrossRef]

Chiang, A.

Dai, J.

J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. lett. 97, 103903 (2006).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Ding, Y. J.

R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
[CrossRef]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

G. Xu, X. Mu, Y. J. Ding, and I. B. Zotova, “Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate,” Opt. Lett. 34, 995–997 (2009).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Eric, L. R. C.

B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Evan, B. J.

B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Fallahi, M.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Fernández-Domínguez, A.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Fernelius, N.

Fiddy, M.

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

Furuta, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005).
[CrossRef]

Gan, Q.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

Gao, Y.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

García-Vidal, F.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Hebling, J.

Heinz, T.

E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001).
[CrossRef]

Hirori, H.

H. Hirori, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Hoffmann, M. C.

Hu, Q.

S. Kumar, Q. Hu, and J. L. Reno, “186  K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

Huang, Y.

Ikari, T.

Inoue, H.

Ishibashi, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005).
[CrossRef]

Ito, H.

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604–1610 (2006).
[CrossRef]

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005).
[CrossRef]

Jacobsen, R.

Jepsen, P. U.

Kajikawa, K.

Kawase, K.

Keiding, S.

Kim, K.-Y.

Knoesel, E.

E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001).
[CrossRef]

Koch, M.

Koch, S. W.

Koketsu, K.

Kumar, N.

Kumar, S.

S. Kumar, Q. Hu, and J. L. Reno, “186  K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

Lee, B.

Lee, I.-M.

Lee, S.-Y.

Lin, S.

Lin, Y.

Maier, S.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Matsuura, S.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

Matthias, M.

B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Mei, T.

Minamide, H.

Moloney, J. V.

Mu, X.

Na, H.

Nakajima, F.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005).
[CrossRef]

Nelson, K. A.

Ogawa, Y.

Otani, C.

Pablo, E. G.

B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Park, J.

Planken, P. C.

Ramakrishnan, G.

Reno, J. L.

S. Kumar, Q. Hu, and J. L. Reno, “186  K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

Sakai, K.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

Scheller, M.

Shan, J.

E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001).
[CrossRef]

Shi, W.

Shibuya, T.

Siegel, P. H.

P. H. Siegel, “THz instruments for space,” IEEE Trans. Antennas Propag. 55, 2957–2965 (2007).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).
[CrossRef]

Suizu, K.

Sun, G.

R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
[CrossRef]

Tanaka, D.

Tanaka, K.

H. Hirori, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Tani, M.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Tsutsui, T.

Tutui, T.

Vezenov, D.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

Vodopyanov, K.

Wagner, K.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

Wang, T.

Watanabe, Y.

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Xie, X.

J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. lett. 97, 103903 (2006).
[CrossRef]

Xu, G.

R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
[CrossRef]

G. Xu, X. Mu, Y. J. Ding, and I. B. Zotova, “Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate,” Opt. Lett. 34, 995–997 (2009).
[CrossRef]

Yarborough, J. M.

Yeh, K.-L.

Zhang, X.

Zhang, X. C.

J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. lett. 97, 103903 (2006).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Zhang, Y.

Zotova, I. B.

R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
[CrossRef]

G. Xu, X. Mu, Y. J. Ding, and I. B. Zotova, “Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate,” Opt. Lett. 34, 995–997 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

S. Kumar, Q. Hu, and J. L. Reno, “186  K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

D. Bosomworth, “The far infrared optical properties of LiNbO3,” Appl. Phys. Lett. 9, 330–331 (1966).
[CrossRef]

H. Hirori, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

R. Chen, G. Sun, G. Xu, Y. J. Ding, and I. B. Zotova, “Generation of high-frequency terahertz waves in periodically poled LiNbO3 based on backward parametric interaction,” Appl. Phys. Lett. 101, 111101 (2012).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

P. H. Siegel, “THz instruments for space,” IEEE Trans. Antennas Propag. 55, 2957–2965 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

B. J. Evan, L. R. C. Eric, M. Matthias, and E. G. Pablo, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Nat. Photonics (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express (10)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
[CrossRef]

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14, 1604–1610 (2006).
[CrossRef]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035  nm,” Opt. Express 15, 11706–11713 (2007).
[CrossRef]

T. Wang, S. Lin, Y. Lin, A. Chiang, and Y. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008).
[CrossRef]

K. Suizu, T. Shibuya, T. Akiba, T. Tutui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008).
[CrossRef]

K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
[CrossRef]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
[CrossRef]

Y. Zhang, X. Zhang, T. Mei, and M. Fiddy, “Negative index modes in surface plasmon waveguides: a study of the relations between lossless and lossy cases,” Opt. Express 18, 12213–12225 (2010).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18, 27112–27117 (2010).
[CrossRef]

G. Ramakrishnan, N. Kumar, P. C. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20, 4067–4073 (2012).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef]

J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Phys. Rev. lett. 97, 103903 (2006).
[CrossRef]

E. Knoesel, M. Bonn, J. Shan, and T. Heinz, “Charge transport and carrier dynamics in liquids probed by THz time-domain spectroscopy,” Phys. Rev. Lett. 86, 340 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. USA 108, 5169–5173 (2011).
[CrossRef]

Semicond. Sci. Technol. (1)

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, S191 (2005).
[CrossRef]

Other (2)

Lumerical Computational Solutions Inc., “FDTD solutions,” https://www.lumerical.com/tcad-products/fdtd/ .

R. W. Boyd, Nonlinear Optics (Academic, 2010), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematics of the proposed THz source with a metal–insulator–metal on top of LN crystal, (b) top-view of optical waveguide mode and the cross-section fundamental modes for (c) THz (d) optical.

Fig. 2.
Fig. 2.

(a) Dispersion relation of the metal–insulator–metal waveguides with 400 nm width, 500 nm height, and 50 nm separation for wavelength between 1500 and 1600 nm. (b) Dispersion relation of such structure on THz region.

Fig. 3.
Fig. 3.

(a) CW THz output power with a quadratic fit of THz wave versus the input power. Blue line is the plasmonic MIM-enhanced setup and red line is nonenhanced one. (b) Normalized output spectrum of generated THz waves.

Fig. 4.
Fig. 4.

Normalized output of THz wave versus (a) the width of the gold nanowires D (b) the separation of the gold nanowires R and (c) the height of the gold nanowires. Optical modes of 100, 350, 500 nm waveguide widths, 50 nm gap, and 400 nm height are shown in (a) insets. Optical modes of 40, 60, 80 nm gap, 350 nm width, and 400 nm height are shown in (b) insets. Optical modes of 50, 150, 300 nm waveguide heights, 50 nm gap, and 350 nm width are shown in (c) insets.

Fig. 5.
Fig. 5.

(a) Temporal waveform of the THz wave pulse. (b) THz power spectra.

Fig. 6.
Fig. 6.

(a) Schematics of the improved THz generator nanostructure with Ti-diffused LN waveguide. (b) Output characteristics of the Ti-diffused configuration and compared with the nondiffused setup. Both the outputs are quadratic fitted. The parameters of the nanostructure are 50 nm for R and 400 nm for D.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ntωtc=n1ω1cn2ω2c.
Δk=k1k2kt=(n1ω1n2ω2ntωt)/c.
cosθ=noptical/nTHz,

Metrics