Abstract

Liquid crystal lasers have great potential as small-sized, low-cost, widely tunable lasers. In this paper, we report tunable lasing based on Fabry–Perot interference in nematic liquid crystal (NLC) cells with a low quality factor. The influence of the cell thickness on the laser performance is addressed in detail. Cells with and without an aluminum mirror as a back electrode were investigated, and the experimental results were compared with theory and simulations. Applying a small voltage over the NLC cell gave rise to a reorientation of the molecules. This enabled electrical tuning of the emission wavelength over more than 9 nm. Although the lasing threshold is higher than for cholesteric liquid crystal lasers, the Fabry–Perot type liquid crystal laser offers similar slope efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [CrossRef]
  2. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
    [CrossRef]
  3. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002).
    [CrossRef]
  4. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
    [CrossRef]
  5. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
    [CrossRef]
  6. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
    [CrossRef]
  7. C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).
  8. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
    [CrossRef]
  9. F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, and Z. Lv, “Polarization and polarization control of random lasers from dye-doped nematic liquid crystals,” Opt. Lett. 38, 1557–1559 (2013).
    [CrossRef]
  10. V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).
  11. G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
    [CrossRef]
  12. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
    [CrossRef]
  13. Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
    [CrossRef]
  14. J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
    [CrossRef]
  15. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
    [CrossRef]
  16. H. Yoshida, K. Tagashira, T. Kumagai, A. Fujii, and M. Ozaki, “Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers,” Opt. Express 18, 12562–12568 (2010).
    [CrossRef]
  17. H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
    [CrossRef]
  18. M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).
  19. M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
    [CrossRef]
  20. L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
    [CrossRef]
  21. D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011).
    [CrossRef]
  22. L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
    [CrossRef]
  23. L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19, 18558–18576 (2011).
    [CrossRef]
  24. L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013).
    [CrossRef]
  25. O. Svelto, Principles of Lasers (Springer, 2010).
  26. C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
    [CrossRef]
  27. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
    [CrossRef]

2013 (2)

F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, and Z. Lv, “Polarization and polarization control of random lasers from dye-doped nematic liquid crystals,” Opt. Lett. 38, 1557–1559 (2013).
[CrossRef]

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013).
[CrossRef]

2011 (5)

D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011).
[CrossRef]

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19, 18558–18576 (2011).
[CrossRef]

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

2010 (6)

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

H. Yoshida, K. Tagashira, T. Kumagai, A. Fujii, and M. Ozaki, “Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers,” Opt. Express 18, 12562–12568 (2010).
[CrossRef]

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
[CrossRef]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

2007 (1)

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

2006 (4)

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
[CrossRef]

2005 (3)

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[CrossRef]

2003 (2)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

2002 (2)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002).
[CrossRef]

1998 (1)

Araoka, F.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

Barna, E. S.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

Barna, V.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Bartolino, F.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

Bartolino, R.

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Bazaru, T.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

Beeckman, J.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013).
[CrossRef]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19, 18558–18576 (2011).
[CrossRef]

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Bian, H.

Blinov, L. M.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
[CrossRef]

Booth, M.

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Caputo, R.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Carbone, G.

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Chen, D. Y.

D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011).
[CrossRef]

Choi, H.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

Cipparrone, G.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
[CrossRef]

Coles, H. J.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

Corbett, C.

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Dancus, I.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

De Luca, A.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

De Visschere, P.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013).
[CrossRef]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19, 18558–18576 (2011).
[CrossRef]

Elston, S. J.

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Fan, B.

Fan, R. W.

D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011).
[CrossRef]

Fan, Y. K.

D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011).
[CrossRef]

Ferjani, S.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002).
[CrossRef]

Friend, R. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

Fujii, A.

H. Yoshida, K. Tagashira, T. Kumagai, A. Fujii, and M. Ozaki, “Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers,” Opt. Express 18, 12562–12568 (2010).
[CrossRef]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
[CrossRef]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
[CrossRef]

Gauza, S.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[CrossRef]

Genack, A. Z.

Haase, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
[CrossRef]

Hoshi, H.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Huang, B.-Y.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Huang, S.-Y.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
[CrossRef]

Inoue, Y.

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
[CrossRef]

Ishikawa, K.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Jesacher, A.

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Kasano, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
[CrossRef]

Kikuchi, H.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
[CrossRef]

Kim, J.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002).
[CrossRef]

Kopp, V. I.

Kumagai, T.

Kuo, C.-T.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Lazarev, V. V.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
[CrossRef]

Lee, C.-R.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Li, J.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[CrossRef]

Lin, J.-D.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Lin, S.-H.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Lu, R.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[CrossRef]

Lv, Z.

Mashiko, S.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
[CrossRef]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

Mazzulla, A.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

Mo, T.-S.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Morris, S. M.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

Mowatt, C.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

Nagamura, T.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
[CrossRef]

Neyts, K.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013).
[CrossRef]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19, 18558–18576 (2011).
[CrossRef]

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Nishimura, S.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Ohta, T.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Ozaki, M.

H. Yoshida, K. Tagashira, T. Kumagai, A. Fujii, and M. Ozaki, “Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers,” Opt. Express 18, 12562–12568 (2010).
[CrossRef]

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
[CrossRef]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
[CrossRef]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

Pagliusi, P.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
[CrossRef]

Palto, S. P.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
[CrossRef]

Park, B.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Pei, Y.

Penninck, L.

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013).
[CrossRef]

L. Penninck, P. De Visschere, J. Beeckman, and K. Neyts, “Dipole radiation within one-dimensional anisotropic microcavities: a simulation method,” Opt. Express 19, 18558–18576 (2011).
[CrossRef]

Petris, A.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

Raynes, P.

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Scaramuzza, N.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002).
[CrossRef]

Shin, K.-D.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Simmonds, R.

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Song, M. H.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Stille, W.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002).
[CrossRef]

Strangi, G.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Sun, X.

Svelto, O.

O. Svelto, Principles of Lasers (Springer, 2010).

Swager, T. M.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Tagashira, K.

Takanishi, Y.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Takezoe, H.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Toyooka, T.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Tsunoda, Y.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Uchida, K.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
[CrossRef]

Umeton, C.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Vanbrabant, P.

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Versace, C.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Vithana, H. K. M.

Vlad, V. I.

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

Watanabe, J.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Wen, C.-H.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[CrossRef]

Wilkinson, T. D.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

Wu, J. W.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

Wu, S.-T.

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[CrossRef]

Xia, Y. Q.

D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011).
[CrossRef]

Yao, F.

Yeh, H.-C.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 298–300 (2011).

Yokoyama, S.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
[CrossRef]

Yoshida, H.

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
[CrossRef]

H. Yoshida, K. Tagashira, T. Kumagai, A. Fujii, and M. Ozaki, “Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers,” Opt. Express 18, 12562–12568 (2010).
[CrossRef]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
[CrossRef]

Zhang, Y.

Zhou, W.

Zhu, Z.

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Adv. Mat. (5)

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mat. 14, 306–309 (2002).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mat. 14, 746–755 (2002).
[CrossRef]

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mat. 18, 48–51 (2006).
[CrossRef]

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mat. 22, 2680–2684 (2010).
[CrossRef]

M. H. Song, B. Park, K.-D. Shin, T. Ohta, Y. Tsunoda, H. Hoshi, Y. Takanishi, K. Ishikawa, J. Watanabe, S. Nishimura, T. Toyooka, Z. Zhu, T. M. Swager, and H. Takezoe, “Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals,” Adv. Mat. 16, 12562–12568 (2010).

Appl. Phys. Express (1)

Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, “Improved lasing threshold of cholesteric liquid crystal lasers with in-plane helix alignment,” Appl. Phys. Express 3, 102702 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[CrossRef]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, F. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[CrossRef]

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Simple voltage tunable liquid crystal laser,” Appl. Phys. Lett. 90, 131103 (2007).
[CrossRef]

L. M. Blinov, G. Cipparrone, P. Pagliusi, V. V. Lazarev, and S. P. Palto, “Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation,” Appl. Phys. Lett. 89, 031114 (2006).
[CrossRef]

J. Appl. Phys. (2)

L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, “Numerical simulation of stimulated emission and lasing in dye doped cholesteric liquid crystal films,” J. Appl. Phys. 113, 063106 (2013).
[CrossRef]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107, 043101 (2010).
[CrossRef]

J. Disp. Technol. (1)

J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44, 8165–8167 (2005).
[CrossRef]

Laser Phys. (1)

D. Y. Chen, Y. K. Fan, R. W. Fan, and Y. Q. Xia, “Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping,” Laser Phys. 21, 2015–2019 (2011).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

G. Carbone, C. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform lying helix alignment on periodic surface relief structure generated via laser scanning lithography,” Mol. Cryst. Liq. Cryst. 544, 37–49 (2011).
[CrossRef]

Opt. Eng. (1)

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, and R. Bartolino, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005).
[CrossRef]

Romanian Rep. Phys. (1)

V. Barna, V. I. Vlad, A. Petris, I. Dancus, T. Bazaru, E. S. Barna, A. De Luca, S. Ferjani, and G. Strangi, “Efficient random laser effect in a new dye-nematic liquid crystalline composite,” Romanian Rep. Phys. 62, 444–454 (2010).

Other (1)

O. Svelto, Principles of Lasers (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Normalized emission and absorption spectrum of PM 597 in E7 (pumped at 532 nm).

Fig. 2.
Fig. 2.

Schematic diagram of a NLC cell with and without applied voltage. When no voltage is applied, the molecules are oriented along the rubbing direction.

Fig. 3.
Fig. 3.

Schematic diagram of the optical setup. HWP, half-wave plate; PBS, polarizing beam splitter; NLC, nematic liquid crystal.

Fig. 4.
Fig. 4.

Theoretically calculated behavior of the threshold gain coefficient as a function of the thickness with α=0.01μm1, β=0.68μm1, R1=0.013, R2=0.86, and R2*=0.88. The cells with and without aluminum are represented in black and gray, respectively.

Fig. 5.
Fig. 5.

Gain profile as a function of the position in the cavity for a 20 μm cell with two ITO mirrors (γ=0, α=0.01μm1, β=0.68μm1, R1=0.013, and R2=0.013). The solid and dotted line represent the numerically calculated gain profile and the exponentially decreasing gain profile used for the analytical solution, respectively.

Fig. 6.
Fig. 6.

Flux to the right and to the left as a function of the position in the cavity for a 20 μm cell with two ITO mirrors (γ=0, Fpump(0)=1, α=0.01μm1, β=0.68μm1, R1=0.013, and R2=0.013). The solid and dotted line represent the flux to the right and to the left, respectively.

Fig. 7.
Fig. 7.

Numerical results for the efficiency as a function of the thickness. Cells with and without aluminum contact are represented in black and gray, respectively.

Fig. 8.
Fig. 8.

Output pulse energy versus input pulse energy for different cells with an aluminum back surface.

Fig. 9.
Fig. 9.

Output pulse energy versus input pulse energy for different cells without an aluminum back surface.

Fig. 10.
Fig. 10.

Overview of the slope efficiency as a function of the thickness. Cells with and without an aluminum mirror are represented with filled and empty diamonds, respectively.

Fig. 11.
Fig. 11.

Overview of the energy threshold as a function of the thickness. Cells with and without an aluminum mirror are represented with filled and empty diamonds, respectively.

Fig. 12.
Fig. 12.

Energy threshold as a function of the thickness (markers, experimental data; solid line, theoretical calculation). Cells with and without an aluminum contact are represented in black and gray, respectively.

Fig. 13.
Fig. 13.

Slope efficiency as a function of the thickness (markers, experimental data; solid line, theoretical calculation). Cells with and without an aluminum contact are represented in black and gray, respectively.

Fig. 14.
Fig. 14.

Wavelength tuning as a function of the rms voltage for a 14 μm cell with an aluminum back contact.

Fig. 15.
Fig. 15.

Wavelength tuning as a function of the rms voltage for a 20 μm cell with an aluminum back contact.

Fig. 16.
Fig. 16.

Overview of the wavelength tuning as a function of the rms voltage for different cells with aluminum back contact.

Fig. 17.
Fig. 17.

Emission spectra of four different pulses emitted from a 75 μm cell with an aluminum mirror.

Fig. 18.
Fig. 18.

Normalized emission spectra of cells with different thicknesses (0 V).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ddxFr(x)=Fr(x)[g(x)α(x)]
ddxFl(x)=Fl(x)[g(x)α(x)],
β(x)Fpump(x)=g(x)[Fr(x)+Fl(x)+γ],
{Fr(x)=Fr(0)exp[(gα)x]Fl(x)=Fl(L)exp[(gα)(Lx)].
{Fr(x)=Fr(0)exp[0xg(x)dxαx]Fl(x)=Fl(L)exp[Lxg(x)dxα(Lx)].
R1R2exp[2L(gthα)]=1gth=α+12Lln(1R1R2),
gth=β2[1exp(βL)][2αL+ln(1R1R2)],
gth=β2{[1exp(βL)]+R2*exp(2βL)[exp(βL)1]}[2αL+ln(1R1R2)].
η=(1R1)Fl(0)Fpump(0).

Metrics