Abstract

The dependence of Doppler broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) on the modulation index, β, has been investigated experimentally on C2H2 and CO2, both in the absence and the presence of optical saturation. It is shown that the maximum signals are obtained for β that produce more than one pair of sidebands: in the Doppler limit and for the prevailing conditions (unsaturated transition and the pertinent modulation frequency and Doppler widths) around 1 and 1.4 for the dispersion and absorption detection phases, respectively. The results verify predictions given in an accompanying work. It is also shown that there is no substantial broadening of the NICE-OHMS signal for β<1. The use of β of unity has yielded a Db-NICE-OHMS detection sensitivity of 4.9×1012cm1Hz1/2, which is the lowest (best) value so far achieved for NICE-OHMS based on a tunable laser. The number of sidebands that needs to be included in fits of the line-shape function to obtain good accuracy has been assessed. It is concluded that it is enough to consider three pairs of sidebands whenever the systematic errors in a concentration assessment should be below 1% when β<2 are used and <1 for β<1.5.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, L. Ma, and J. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [CrossRef]
  2. L. Ma, J. Ye, P. Dube, and J. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
    [CrossRef]
  3. P. Ehlers, I. Silander, J. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for doppler-broadened detection in the 10−12 cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
    [CrossRef]
  4. P. Ehlers, I. Silander, and O. Axner, “Doppler broadened NICE-OHMS—optimum modulation and demodulation conditions, cavity length, and modulation order,” (submitted to J. Opt. Soc. Am. B).
  5. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
    [CrossRef]
  6. O. Axner, P. Ehlers, A. Foltynowicz, I. S. Silander, and J. Wang, “NICE-OHMS—frequency modulation cavity-enhanced spectroscopy—principles and performance,” in Cavity-Enhanced Spectroscopy and Sensing, Chap. 6, Vol. 179 of Springer Series in Optical Sciences (Springer, 2014), pp. 211–251.
  7. L. Gianfrani, R. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
    [CrossRef]
  8. N. van Leeuwen and A. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713–1721 (2004).
    [CrossRef]
  9. J. Bood, A. McIlroy, and D. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
    [CrossRef]
  10. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef]
  11. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  12. B. Siller, M. Porambo, A. Mills, and B. McCall, “Noise immune cavity enhanced optical heterodyne velocity modulation spectroscopy,” Opt. Express 19, 24822–24827 (2011).
    [CrossRef]
  13. N. Nayak and G. Agarwal, “Absorption and fluorescence in frequency-modulated fields under conditions of strong modulation and saturation,” Phys. Rev. A 31, 3175–3182 (1985).
    [CrossRef]
  14. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency-modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [CrossRef]
  15. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
    [CrossRef]
  16. A. Foltynovicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
    [CrossRef]
  17. P. Ehlers, A. Johansson, I. Silander, A. Foltynowicz, and O. Axner are preparing a manuscript to be called “On the use of etalon-immune-distances to reduce the influence of background signals in FMS and NICE-OHMS—a comparison of its applicability on the absorption and dispersion modes of detection.”
  18. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
    [CrossRef]
  19. J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).
  20. A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
    [CrossRef]
  21. K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
    [CrossRef]
  22. M. W. Porambo, B. M. Siller, J. M. Pearson, and B. J. McCall, “Broadly tunable mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometer,” Opt. Lett. 37, 4422–4424 (2012).
    [CrossRef]

2014 (1)

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).

2012 (3)

2011 (3)

2008 (3)

2006 (1)

J. Bood, A. McIlroy, and D. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

2004 (1)

1999 (2)

1998 (1)

1994 (1)

1985 (1)

N. Nayak and G. Agarwal, “Absorption and fluorescence in frequency-modulated fields under conditions of strong modulation and saturation,” Phys. Rev. A 31, 3175–3182 (1985).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1980 (1)

Agarwal, G.

N. Nayak and G. Agarwal, “Absorption and fluorescence in frequency-modulated fields under conditions of strong modulation and saturation,” Phys. Rev. A 31, 3175–3182 (1985).
[CrossRef]

Axner, O.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).

P. Ehlers, I. Silander, J. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for doppler-broadened detection in the 10−12 cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[CrossRef]

A. Foltynovicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

O. Axner, P. Ehlers, A. Foltynowicz, I. S. Silander, and J. Wang, “NICE-OHMS—frequency modulation cavity-enhanced spectroscopy—principles and performance,” in Cavity-Enhanced Spectroscopy and Sensing, Chap. 6, Vol. 179 of Springer Series in Optical Sciences (Springer, 2014), pp. 211–251.

P. Ehlers, I. Silander, and O. Axner, “Doppler broadened NICE-OHMS—optimum modulation and demodulation conditions, cavity length, and modulation order,” (submitted to J. Opt. Soc. Am. B).

P. Ehlers, A. Johansson, I. Silander, A. Foltynowicz, and O. Axner are preparing a manuscript to be called “On the use of etalon-immune-distances to reduce the influence of background signals in FMS and NICE-OHMS—a comparison of its applicability on the absorption and dispersion modes of detection.”

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef]

Bood, J.

J. Bood, A. McIlroy, and D. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

Crabtree, K. N.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

Dube, P.

Ehlers, P.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).

P. Ehlers, I. Silander, J. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for doppler-broadened detection in the 10−12 cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[CrossRef]

P. Ehlers, I. Silander, and O. Axner, “Doppler broadened NICE-OHMS—optimum modulation and demodulation conditions, cavity length, and modulation order,” (submitted to J. Opt. Soc. Am. B).

O. Axner, P. Ehlers, A. Foltynowicz, I. S. Silander, and J. Wang, “NICE-OHMS—frequency modulation cavity-enhanced spectroscopy—principles and performance,” in Cavity-Enhanced Spectroscopy and Sensing, Chap. 6, Vol. 179 of Springer Series in Optical Sciences (Springer, 2014), pp. 211–251.

P. Ehlers, A. Johansson, I. Silander, A. Foltynowicz, and O. Axner are preparing a manuscript to be called “On the use of etalon-immune-distances to reduce the influence of background signals in FMS and NICE-OHMS—a comparison of its applicability on the absorption and dispersion modes of detection.”

Foltynovicz, A.

Foltynowicz, A.

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

O. Axner, P. Ehlers, A. Foltynowicz, I. S. Silander, and J. Wang, “NICE-OHMS—frequency modulation cavity-enhanced spectroscopy—principles and performance,” in Cavity-Enhanced Spectroscopy and Sensing, Chap. 6, Vol. 179 of Springer Series in Optical Sciences (Springer, 2014), pp. 211–251.

P. Ehlers, A. Johansson, I. Silander, A. Foltynowicz, and O. Axner are preparing a manuscript to be called “On the use of etalon-immune-distances to reduce the influence of background signals in FMS and NICE-OHMS—a comparison of its applicability on the absorption and dispersion modes of detection.”

Fox, R.

Gianfrani, L.

Hall, J.

Hodges, J. N.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

Hollberg, L.

Jenkins, P. A.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

Johansson, A.

P. Ehlers, A. Johansson, I. Silander, A. Foltynowicz, and O. Axner are preparing a manuscript to be called “On the use of etalon-immune-distances to reduce the influence of background signals in FMS and NICE-OHMS—a comparison of its applicability on the absorption and dispersion modes of detection.”

Kelly, J. E.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

Kreckel, H.

A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
[CrossRef]

Lenth, W.

J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency-modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Ma, L.

Ma, W.

McCall, B.

McCall, B. J.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

M. W. Porambo, B. M. Siller, J. M. Pearson, and B. J. McCall, “Broadly tunable mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometer,” Opt. Lett. 37, 4422–4424 (2012).
[CrossRef]

A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
[CrossRef]

McIlroy, A.

J. Bood, A. McIlroy, and D. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

Mills, A.

Mills, A. A.

A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
[CrossRef]

Nayak, N.

N. Nayak and G. Agarwal, “Absorption and fluorescence in frequency-modulated fields under conditions of strong modulation and saturation,” Phys. Rev. A 31, 3175–3182 (1985).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Osborn, D.

J. Bood, A. McIlroy, and D. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

Pearson, J. M.

Perera, M.

A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
[CrossRef]

Perry, A. J.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

Porambo, M.

Porambo, M. W.

M. W. Porambo, B. M. Siller, J. M. Pearson, and B. J. McCall, “Broadly tunable mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometer,” Opt. Lett. 37, 4422–4424 (2012).
[CrossRef]

A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
[CrossRef]

Schmidt, F. M.

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Silander, I.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).

P. Ehlers, I. Silander, J. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for doppler-broadened detection in the 10−12 cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[CrossRef]

A. Foltynovicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[CrossRef]

P. Ehlers, A. Johansson, I. Silander, A. Foltynowicz, and O. Axner are preparing a manuscript to be called “On the use of etalon-immune-distances to reduce the influence of background signals in FMS and NICE-OHMS—a comparison of its applicability on the absorption and dispersion modes of detection.”

P. Ehlers, I. Silander, and O. Axner, “Doppler broadened NICE-OHMS—optimum modulation and demodulation conditions, cavity length, and modulation order,” (submitted to J. Opt. Soc. Am. B).

Silander, I. S.

O. Axner, P. Ehlers, A. Foltynowicz, I. S. Silander, and J. Wang, “NICE-OHMS—frequency modulation cavity-enhanced spectroscopy—principles and performance,” in Cavity-Enhanced Spectroscopy and Sensing, Chap. 6, Vol. 179 of Springer Series in Optical Sciences (Springer, 2014), pp. 211–251.

Siller, B.

Siller, B. M.

M. W. Porambo, B. M. Siller, J. M. Pearson, and B. J. McCall, “Broadly tunable mid-infrared noise-immune cavity-enhanced optical heterodyne molecular spectrometer,” Opt. Lett. 37, 4422–4424 (2012).
[CrossRef]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
[CrossRef]

Supplee, J. M.

van Leeuwen, N.

Wang, J.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).

P. Ehlers, I. Silander, J. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for doppler-broadened detection in the 10−12 cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[CrossRef]

O. Axner, P. Ehlers, A. Foltynowicz, I. S. Silander, and J. Wang, “NICE-OHMS—frequency modulation cavity-enhanced spectroscopy—principles and performance,” in Cavity-Enhanced Spectroscopy and Sensing, Chap. 6, Vol. 179 of Springer Series in Optical Sciences (Springer, 2014), pp. 211–251.

Whittaker, E. A.

Wilson, A.

Ye, J.

Appl. Opt. (1)

Appl. Phys. B (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[CrossRef]

J. Chem. Phys. (2)

A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel, and B. J. McCall, “Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam,” J. Chem. Phys. 135, 224201 (2011).
[CrossRef]

J. Bood, A. McIlroy, and D. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef]

J. Opt. Soc. Am. B (8)

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008).
[CrossRef]

A. Foltynovicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011).
[CrossRef]

L. Gianfrani, R. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
[CrossRef]

N. van Leeuwen and A. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713–1721 (2004).
[CrossRef]

J. Ye, L. Ma, and J. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
[CrossRef]

L. Ma, J. Ye, P. Dube, and J. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[CrossRef]

P. Ehlers, I. Silander, J. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for doppler-broadened detection in the 10−12 cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” J. Quant. Spectrosc. Radiat. Transfer 136, 28–44 (2014).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

N. Nayak and G. Agarwal, “Absorption and fluorescence in frequency-modulated fields under conditions of strong modulation and saturation,” Phys. Rev. A 31, 3175–3182 (1985).
[CrossRef]

Other (3)

P. Ehlers, A. Johansson, I. Silander, A. Foltynowicz, and O. Axner are preparing a manuscript to be called “On the use of etalon-immune-distances to reduce the influence of background signals in FMS and NICE-OHMS—a comparison of its applicability on the absorption and dispersion modes of detection.”

P. Ehlers, I. Silander, and O. Axner, “Doppler broadened NICE-OHMS—optimum modulation and demodulation conditions, cavity length, and modulation order,” (submitted to J. Opt. Soc. Am. B).

O. Axner, P. Ehlers, A. Foltynowicz, I. S. Silander, and J. Wang, “NICE-OHMS—frequency modulation cavity-enhanced spectroscopy—principles and performance,” in Cavity-Enhanced Spectroscopy and Sensing, Chap. 6, Vol. 179 of Springer Series in Optical Sciences (Springer, 2014), pp. 211–251.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Blue dashed, dashed–dotted, and dotted curves illustrate plots of the relative magnitudes of the contributions of the various pairs of line-shape functions that specific sidebands adress for the absorption [panel (a)] and dispersion [panel (b)] modes of detection, given by Jn(β)[Jn1(β)±Jn+1(β)], for n being 1, 2, and 3, respectively. Solid black line in each panel displays the contribution of the first pair of sidebands, i.e., χ1abs/dispχ1abs/disp, when the conventional triplet formalism is used while the solid gray line in panel (b) marks the contribution of the carrier. The Bessel functions in the legends should be understood as functions of the modulation index, i.e., JnJn(β). See text for details.

Fig. 2.
Fig. 2.

Uppermost windows in each panel illustrated by the black curves NICE-OHMS absorption [panels (a) and (c)] and dispersion signals [panel (b) and (d)] from 300 mTorr CO2 [panels (a) and (b)] and 1000 ppm C2H2 in 10 mTorr N2 [panels (c) and (d)], measured with four different modulation indices. The colored partly overlapping curves represent the corresponding fits of Eq. (2), coded as β=0.4 (blue, solid), 1.0 (red, dashed), 1.6 (green, dotted), and 2.2 (orange, dashed–dotted). Residuals of the fits are shown in the lowermost windows in each panel.

Fig. 3.
Fig. 3.

Peak-to-peak NICE-OHMS signal as a function of the modulation index, β, measured with 300 mTorr pure CO2 [panel (a)] and 10 mTorr of 1000 ppm C2H2 in N2 [panel (b)], for absorption (squares) and dispersion phase (circles). The blue and red curves represent simulated dependencies according to Eq. (1) for pure absorption and dispersion phases, respectively, while the gray lines indicate the dependencies with a given phase deviation, ±0.05 radians from pure absorption and ±0.1 radians from pure dispersion, respectively.

Fig. 4.
Fig. 4.

Ratio of the signal strength retrieved from curve fitting and that of the reference spectra for the cases N=0,1, and 2, indicated as solid, dashed–dotted, and dotted lines, respectively, for absorption (blue squares) and dispersion phase (red circles).

Fig. 5.
Fig. 5.

System Allan deviation for the length-normalized absorbance, represented by α0/L, for β=0.4 (upper curve) and β=1.0 (lower curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNODb(Δν,νm,β,θ)=S0χ¯NODb(Δν,νm,β,θ),
χ¯NODb(Δν,νm,β,θ)=1χ0({n=0NJn(β)Jn+1(β)[χn1abs(Δν,νm)+χnabs(Δν,νm)χnabs(Δν,νm)χn+1abs(Δν,νm)]}sin(θ)+{n=0NJn(β)Jn+1(β)[χn1disp(Δν,νm)χndisp(Δν,νm)χndisp(Δν,νm)+χn+1disp(Δν,νm)]}cos(θ)),
J1(β)[J0(β)+J2(β)](χ1absχ1abs)+J2(β)[J1(β)+J3(β)](χ2absχ2abs)+J3(β)[J2(β)+J4(β)](χ3absχ3abs)+
2J0(β)J1(β)χ0disp+J1(β)[J0(β)J2(β)](χ1disp+χ1disp)+J2(β)[J1(β)J3(β)](χ2disp+χ2disp)+J3(β)[J2(β)J4(β)](χ3disp+χ3disp)+.

Metrics