Abstract

Within the framework of generalized Lorenz–Mie theory, the properties of three-dimensional photonic jets emerging from spheroidal particles illuminated by a focused Gaussian beam are studied. The intensity, focal distance, and transverse and longitudinal dimensions of a photonic jet depending on the ellipticity of the spheroidal particle are numerically investigated. The simulation results show that, by simply varying the ellipticity, it is possible to obtain localized photon fluxes having different power characteristics and spatial dimensions. This can be of interest for several applications, such as high-resolution (nanometer scale) optical sensors, subdiffraction-resolution optical virtual imaging, and ultradirectional optical antennas.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
    [CrossRef]
  2. A. Itagi and W. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22, 2847–2858 (2005).
    [CrossRef]
  3. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008).
    [CrossRef]
  4. F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet,” Opt. Commun. 294, 351–360 (2013).
    [CrossRef]
  5. D. McCloskey, Y. P. Rakovich, and J. Donegan, “Controlling the properties of Photonic Jets,” in 12th International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–3.
  6. S. S. Stafeev and V. V. Kotlyar, “Elongated photonic nanojet from truncated cylindrical zone plate,” J. Phys. B 2012, 123872 (2012).
  7. D. Maděránková, I. Provazník, and K. Klepárník, “Numerical modeling of photonic nanojet behind dielectric microcylinder,” in Proceedings of World Congress on Medical Physics and Biomedical Engineering, O. Dossel and W. C. Schlegel, eds. (Springer, 2010), pp. 1135–1138.
  8. X. Li, Z. G. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
    [CrossRef]
  9. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30, 2641–2643 (2005).
    [CrossRef]
  10. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200–14212 (2008).
    [CrossRef]
  11. C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18, 16805–16812 (2010).
    [CrossRef]
  12. S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17, 3722–3731 (2009).
    [CrossRef]
  13. A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E (2009).
  14. H. X. Ding, L. L. Dai, and C. C. Yan, “Properties of the 3D photonic nanojet based on the refractive index of surroundings,” Chin. Opt. Lett. 8, 706–708 (2010).
    [CrossRef]
  15. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).
    [CrossRef]
  16. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28, 1825–1830 (2011).
    [CrossRef]
  17. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41, 520–525 (2011).
  18. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Nonstationary photonic jet from dielectric microsphere,” J. Quant. Spectrosc. Radiat. Transfer 131, 146–152 (2013).
    [CrossRef]
  19. Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Photonic jet shaping of mesoscale dielectric spherical particles resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).
    [CrossRef]
  20. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29, 758–762 (2012).
    [CrossRef]
  21. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
    [CrossRef]
  22. L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105, 123512 (2009).
    [CrossRef]
  23. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
    [CrossRef]
  24. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, “Nanojets and directional emission in symmetric photonic molecules,” Opt. Express 15, 17343–17350 (2007).
    [CrossRef]
  25. D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20, 128–140 (2012).
    [CrossRef]
  26. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19, 7084–7093 (2011).
    [CrossRef]
  27. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).
  28. P. Ghenuche, H. Rigneault, and J. Wenger, “Photonic nanojet focusing for hollow-core photonic crystal fiber probes,” Appl. Opt. 51, 8637–8640 (2012).
    [CrossRef]
  29. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).
  30. H. Seidfaraji, M. Hasan, and J. J. Simpson, “A feasibility study of microjets applied to breast cancer detection,” in International Conference on Electromagnetics in Advanced Applications (IEEE, 2012), pp. 949–951.
  31. V. Yannopapas, “Photonic nanojets as three-dimensional optical atom traps: a theoretical study,” Opt. Commun. 285, 2952–2955 (2012).
    [CrossRef]
  32. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
    [CrossRef]
  33. S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92, 211102 (2008).
    [CrossRef]
  34. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
    [CrossRef]
  35. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
    [CrossRef]
  36. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
    [CrossRef]
  37. C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).
  38. J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
    [CrossRef]
  39. D. Gerard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26, 1473–1478 (2009).
    [CrossRef]
  40. S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.
  41. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
    [CrossRef]
  42. S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
    [CrossRef]
  43. H. Aouani, P. Schon, S. Brasselet, H. Rigneault, and J. Wenger, “Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres,” Biomed. Opt. Express 1, 1075–1083 (2010).
    [CrossRef]
  44. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [CrossRef]
  45. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
    [CrossRef]
  46. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Near-field scattering by dielectric spheroidal particles with sizes on the order the illuminating wavelength,” J. Opt. Soc. Am. B 27, 1221–1231 (2010).
    [CrossRef]
  47. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes,” Opt. Express 19, 16207–16222 (2011).
    [CrossRef]
  48. C.-Y. Liu, “Ultra-elongated photonic nanojets generated by a graded-index microellipsoid,” Prog. Electromagn. Res. Lett. 37, 153–165 (2013).
  49. G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).
  50. Y. Han and Z. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).
    [CrossRef]
  51. Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
    [CrossRef]
  52. Y. Han and Z. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).
    [CrossRef]
  53. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).
    [CrossRef]
  54. G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).
    [CrossRef]
  55. L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013).
    [CrossRef]
  56. C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).
  57. M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).
    [CrossRef]

2013 (5)

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet,” Opt. Commun. 294, 351–360 (2013).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Nonstationary photonic jet from dielectric microsphere,” J. Quant. Spectrosc. Radiat. Transfer 131, 146–152 (2013).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Photonic jet shaping of mesoscale dielectric spherical particles resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).
[CrossRef]

C.-Y. Liu, “Ultra-elongated photonic nanojets generated by a graded-index microellipsoid,” Prog. Electromagn. Res. Lett. 37, 153–165 (2013).

L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013).
[CrossRef]

2012 (5)

2011 (7)

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19, 7084–7093 (2011).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28, 1825–1830 (2011).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41, 520–525 (2011).

G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).
[CrossRef]

M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes,” Opt. Express 19, 16207–16222 (2011).
[CrossRef]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

2010 (7)

2009 (6)

S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17, 3722–3731 (2009).
[CrossRef]

A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E (2009).

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105, 123512 (2009).
[CrossRef]

D. Gerard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26, 1473–1478 (2009).
[CrossRef]

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
[CrossRef]

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).
[CrossRef]

2008 (8)

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
[CrossRef]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
[CrossRef]

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
[CrossRef]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
[CrossRef]

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008).
[CrossRef]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200–14212 (2008).
[CrossRef]

2007 (5)

2006 (1)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

2005 (3)

2004 (1)

2002 (2)

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
[CrossRef]

Y. Han and Z. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).
[CrossRef]

2001 (1)

Allen, K. W.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

Antoszyk, A. N.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

Aouani, H.

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

Astratov, V. N.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

Backman, V.

Bonod, N.

Brasselet, S.

Cai, X.

Challener, W.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[CrossRef]

Chen, Z. G.

Cregut, O.

S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
[CrossRef]

S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.

Cui, X.

Dai, L. L.

Darafsheh, A.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).

Deiss, F.

Devilez, A.

Ding, H. X.

Donegan, J.

D. McCloskey, Y. P. Rakovich, and J. Donegan, “Controlling the properties of Photonic Jets,” in 12th International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–3.

Donegan, J. F.

Du, C. L.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).

Erni, D.

Ferrand, P.

Flammer, C.

C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).

Fried, N. M.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

Gachet, D.

Geints, Y. E.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Nonstationary photonic jet from dielectric microsphere,” J. Quant. Spectrosc. Radiat. Transfer 131, 146–152 (2013).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Photonic jet shaping of mesoscale dielectric spherical particles resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29, 758–762 (2012).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41, 520–525 (2011).

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28, 1825–1830 (2011).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).
[CrossRef]

Gerard, D.

Gérard, D.

Gerlach, M.

Ghenuche, P.

Gouesbet, G.

L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013).
[CrossRef]

G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).
[CrossRef]

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

Gréhan, G.

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Haacke, S.

S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
[CrossRef]

S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.

Hafner, C.

Han, L.

L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013).
[CrossRef]

Han, Y.

L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013).
[CrossRef]

G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).
[CrossRef]

Y. Han and Z. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
[CrossRef]

Y. Han and Z. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).
[CrossRef]

Hasan, M.

H. Seidfaraji, M. Hasan, and J. J. Simpson, “A feasibility study of microjets applied to breast cancer detection,” in International Conference on Electromagnetics in Advanced Applications (IEEE, 2012), pp. 949–951.

Heifetz, A.

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Hirlimann, C.

S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
[CrossRef]

S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Itagi, A.

Kasim, J.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
[CrossRef]

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[CrossRef]

Kerr, M. D.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Klepárník, K.

D. Maděránková, I. Provazník, and K. Klepárník, “Numerical modeling of photonic nanojet behind dielectric microcylinder,” in Proceedings of World Congress on Medical Physics and Biomedical Engineering, O. Dossel and W. C. Schlegel, eds. (Springer, 2010), pp. 1135–1138.

Kong, S. C.

Kotlyar, V. V.

S. S. Stafeev and V. V. Kotlyar, “Elongated photonic nanojet from truncated cylindrical zone plate,” J. Phys. B 2012, 123872 (2012).

Le Cong, N.

S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.

Lecler, S.

S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
[CrossRef]

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30, 2641–2643 (2005).
[CrossRef]

S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.

Lecong, N.

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Li, L. J.

Li, X.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

X. Li, Z. G. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
[CrossRef]

Liu, C.-Y.

C.-Y. Liu, “Ultra-elongated photonic nanojets generated by a graded-index microellipsoid,” Prog. Electromagn. Res. Lett. 37, 153–165 (2013).

Liu, J. P.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Lu, Y. F.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Luque, A.

Maderánková, D.

D. Maděránková, I. Provazník, and K. Klepárník, “Numerical modeling of photonic nanojet behind dielectric microcylinder,” in Proceedings of World Congress on Medical Physics and Biomedical Engineering, O. Dossel and W. C. Schlegel, eds. (Springer, 2010), pp. 1135–1138.

Marti, A.

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).
[CrossRef]

Martí, A.

McCloskey, D.

D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20, 128–140 (2012).
[CrossRef]

D. McCloskey, Y. P. Rakovich, and J. Donegan, “Controlling the properties of Photonic Jets,” in 12th International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–3.

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

Méès, L.

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
[CrossRef]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[CrossRef]

Mendes, M. J.

Meyrueis, P.

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[CrossRef]

Nieto-Vesperinas, M.

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet,” Opt. Commun. 294, 351–360 (2013).
[CrossRef]

Ong, C. K.

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105, 123512 (2009).
[CrossRef]

Panina, E. K.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Photonic jet shaping of mesoscale dielectric spherical particles resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Nonstationary photonic jet from dielectric microsphere,” J. Quant. Spectrosc. Radiat. Transfer 131, 146–152 (2013).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29, 758–762 (2012).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41, 520–525 (2011).

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28, 1825–1830 (2011).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).
[CrossRef]

Pianta, M.

Popov, E.

Provazník, I.

D. Maděránková, I. Provazník, and K. Klepárník, “Numerical modeling of photonic nanojet behind dielectric microcylinder,” in Proceedings of World Congress on Medical Physics and Biomedical Engineering, O. Dossel and W. C. Schlegel, eds. (Springer, 2010), pp. 1135–1138.

Rakovich, Y. P.

M. Gerlach, Y. P. Rakovich, and J. F. Donegan, “Nanojets and directional emission in symmetric photonic molecules,” Opt. Express 15, 17343–17350 (2007).
[CrossRef]

D. McCloskey, Y. P. Rakovich, and J. Donegan, “Controlling the properties of Photonic Jets,” in 12th International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–3.

Rehspringer, J. L.

S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
[CrossRef]

S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.

Ren, K.

Rigneault, H.

Ruiz, C. M.

Sahakian, A.

Sahakian, A. V.

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Schon, P.

See, A.

Seidfaraji, H.

H. Seidfaraji, M. Hasan, and J. J. Simpson, “A feasibility study of microjets applied to breast cancer detection,” in International Conference on Electromagnetics in Advanced Applications (IEEE, 2012), pp. 949–951.

Shen, Z. X.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
[CrossRef]

Shi, D. N.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).

Simpson, J. J.

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18, 16805–16812 (2010).
[CrossRef]

H. Seidfaraji, M. Hasan, and J. J. Simpson, “A feasibility study of microjets applied to breast cancer detection,” in International Conference on Electromagnetics in Advanced Applications (IEEE, 2012), pp. 949–951.

Sojic, N.

Stafeev, S. S.

S. S. Stafeev and V. V. Kotlyar, “Elongated photonic nanojet from truncated cylindrical zone plate,” J. Phys. B 2012, 123872 (2012).

Stout, B.

Taflove, A.

Takakura, Y.

Tobias, I.

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).
[CrossRef]

Tobías, I.

Valdivia-Valero, F.

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet,” Opt. Commun. 294, 351–360 (2013).
[CrossRef]

Wang, H.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Wang, J.

L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013).
[CrossRef]

Wang, J. J.

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Wenger, J.

Wu, S.

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
[CrossRef]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[CrossRef]

Wu, Z.

Y. Han and Z. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).
[CrossRef]

Y. Han and Z. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).
[CrossRef]

Xu, F.

G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).
[CrossRef]

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007).
[CrossRef]

Yan, C. C.

Yang, S.

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Yannopapas, V.

V. Yannopapas, “Photonic nanojets as three-dimensional optical atom traps: a theoretical study,” Opt. Commun. 285, 2952–2955 (2012).
[CrossRef]

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Ying, H. S.

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

You, Y. M.

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
[CrossRef]

Yu, T.

Zemlyanov, A. A.

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Nonstationary photonic jet from dielectric microsphere,” J. Quant. Spectrosc. Radiat. Transfer 131, 146–152 (2013).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Photonic jet shaping of mesoscale dielectric spherical particles resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly excited transparent dielectric microspheres,” J. Opt. Soc. Am. B 29, 758–762 (2012).
[CrossRef]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41, 520–525 (2011).

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28, 1825–1830 (2011).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).
[CrossRef]

Zhao, L.

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105, 123512 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95, 071105 (2009).
[CrossRef]

S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, “Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets,” Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Biomed. Opt. Express (1)

Chin. Opt. Lett. (1)

J. Appl. Phys. (2)

L. Zhao and C. K. Ong, “Direct observation of photonic jets and corresponding backscattering enhancement at microwave frequencies,” J. Appl. Phys. 105, 123512 (2009).
[CrossRef]

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

J. Opt. A (1)

Y. Han and Z. Wu, “Absorption and scattering by an oblate particle,” J. Opt. A 4, 74–77 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (4)

J. Phys. B (1)

S. S. Stafeev and V. V. Kotlyar, “Elongated photonic nanojet from truncated cylindrical zone plate,” J. Phys. B 2012, 123872 (2012).

J. Quant. Spectrosc. Radiat. Transfer (4)

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Nonstationary photonic jet from dielectric microsphere,” J. Quant. Spectrosc. Radiat. Transfer 131, 146–152 (2013).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Photonic jet shaping of mesoscale dielectric spherical particles resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).
[CrossRef]

G. Gouesbet, F. Xu, and Y. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011).
[CrossRef]

L. Han, Y. Han, J. Wang, and G. Gouesbet, “Internal and near-surface field distributions for a spheroidal particle illuminated by a focused Gaussian beam: on-axis case,” J. Quant. Spectrosc. Radiat. Transfer 126, 38–43 (2013).
[CrossRef]

J. Raman. Spectrosc. (1)

C. L. Du, J. Kasim, Y. M. You, D. N. Shi, and Z. X. Shen, “Enhancement of Raman scattering by individual dielectric microspheres,” J. Raman. Spectrosc. 42, 145–148 (2011).

Nanotechnology (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18, 485302 (2007).
[CrossRef]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[CrossRef]

Opt. Commun. (4)

V. Yannopapas, “Photonic nanojets as three-dimensional optical atom traps: a theoretical study,” Opt. Commun. 285, 2952–2955 (2012).
[CrossRef]

F. Valdivia-Valero and M. Nieto-Vesperinas, “Optical forces on cylinders near subwavelength slits illuminated by a photonic nanojet,” Opt. Commun. 294, 351–360 (2013).
[CrossRef]

Y. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic-nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).
[CrossRef]

Y. Han, L. Méès, K. Ren, G. Gouesbet, S. Wu, and G. Gréhan, “Scattering of light by spheroids: the far field case,” Opt. Commun. 210, 1–9 (2002).
[CrossRef]

Opt. Express (16)

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
[CrossRef]

M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes,” Opt. Express 19, 16207–16222 (2011).
[CrossRef]

H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009).
[CrossRef]

S. Lecler, S. Haacke, N. Lecong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
[CrossRef]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200–14212 (2008).
[CrossRef]

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18, 16805–16812 (2010).
[CrossRef]

S. C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17, 3722–3731 (2009).
[CrossRef]

X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16, 13560–13568 (2008).
[CrossRef]

X. Li, Z. G. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
[CrossRef]

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
[CrossRef]

J. Kasim, T. Yu, Y. M. You, J. P. Liu, A. See, L. J. Li, and Z. X. Shen, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
[CrossRef]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[CrossRef]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
[CrossRef]

M. Gerlach, Y. P. Rakovich, and J. F. Donegan, “Nanojets and directional emission in symmetric photonic molecules,” Opt. Express 15, 17343–17350 (2007).
[CrossRef]

D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20, 128–140 (2012).
[CrossRef]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19, 7084–7093 (2011).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. Devilez, J. Wenger, B. Stout, and N. Bonod, “Transverse and longitudinal confinement of photonic nanojets by compound dielectric microspheres,” Proc. SPIE 7393, 73930E (2009).

Prog. Electromagn. Res. Lett. (1)

C.-Y. Liu, “Ultra-elongated photonic nanojets generated by a graded-index microellipsoid,” Prog. Electromagn. Res. Lett. 37, 153–165 (2013).

Progress Electromagn. Res. (1)

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, “Focusing microprobes based on integrated chains of microspheres,” Progress Electromagn. Res. 6, 793–797 (2010).

Quantum Electron. (1)

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet effect in multilayer micrometre-sized spherical particles,” Quantum Electron. 41, 520–525 (2011).

SPIE Newsroom (1)

V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom 12, 32–34 (2010).

Other (6)

H. Seidfaraji, M. Hasan, and J. J. Simpson, “A feasibility study of microjets applied to breast cancer detection,” in International Conference on Electromagnetics in Advanced Applications (IEEE, 2012), pp. 949–951.

D. Maděránková, I. Provazník, and K. Klepárník, “Numerical modeling of photonic nanojet behind dielectric microcylinder,” in Proceedings of World Congress on Medical Physics and Biomedical Engineering, O. Dossel and W. C. Schlegel, eds. (Springer, 2010), pp. 1135–1138.

D. McCloskey, Y. P. Rakovich, and J. Donegan, “Controlling the properties of Photonic Jets,” in 12th International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–3.

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

S. Lecler, S. Haacke, N. Le Cong, O. Cregut, J. L. Rehspringer, and C. Hirlimann, “Enhancement of two-photon excited fluorescence by sub-micron photonic jets,” in 15th International Conference on Ultrafast Phenomena, Vol. 88 of Springer Series in Chemical physics (Optical Society of America, 2007), pp. 181–183.

C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Definition of the configuration under study: (a) prolate spheroid with a/b>1. (b) Oblate spheroid with a/b<1.

Fig. 2.
Fig. 2.

Intensity spatial distributions over the xz plane for (a) incident Gaussian beam (polarized along the x axis) and (b) Gaussian beam focused by a silica spheroid with a=4μm, b=3.2μm, and nII=1.49.

Fig. 3.
Fig. 3.

Influence of the waist radius of the incident Gaussian beam on the photonic jet generated by silica spheroid: (a) intensity distributions along the z axis and (b) intensity distributions along the x axis at maximum intensity spots. The dashed line marks the particle boundary.

Fig. 4.
Fig. 4.

Spatial distributions of the photonic jet relative intensity formed in the vicinity of polystyrene spheroids with different major and minor axes placed in water and illuminated by a Gaussian beam: (a) a/b=1.5, (b) a/b=1.2, (c) a/b=1, (d) a/b=0.8333, and (e) a/b=0.6667.

Fig. 5.
Fig. 5.

Photonic jet parameters for water droplets with different ellipticities a/b located in air. The red dash–dot line marks the particle boundary.

Tables (1)

Tables Icon

Table 1. Comparison of the Parameters of the Photonic Jets Displayed in Fig. 4

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

Ei=E0n=1in[Gn(cI)Me1nr(1)(cI,ξ,η,ϕ)+iFn(cI)No1nr(1)(cI,ξ,η,ϕ)],
Hi=k1ωμ1E0n=1in[Gn(cI)Mo1nr(1)(cI,ξ,η,ϕ)iFn(cI)Ne1nr(1)(cI,ξ,η,ϕ)].
Es=E0n=1in[βnMe1nr(3)(cI,ξ,η,ϕ)+iαnNo1nr(3)(cI,ξ,η,ϕ)],
Hs=k1ωμ1E0n=1in[αnMo1nr(3)(cI,ξ,η,ϕ)iβnNe1nr(3)(cI,ξ,η,ϕ)].
Ew=E0n=1in[δnMe1nr(1)(cII,ξ,η,ϕ)+iγnNo1nr(1)(cII,ξ,η,ϕ)],
Hw=k2ωμ2E0n=1in[γnMo1nr(1)(cII,ξ,η,ϕ)iδnNe1nr(1)(cII,ξ,η,ϕ)].
f=12(a2b2)12,prolate spheroid witha/b>1,
f=12(b2a2)12,oblates spheroid witha/b<1.
Eηi+Eηs=Eηw,Eφi+Eφs=EφwHηi+Hηs=Hηw,Hφi+Hφs=Hφw}atξ=ξ0,
ξ0=a2f,prolate spheroid witha/b>1,
ξ0=b2f,oblate spheroid witha/b<1.
Eξs=E0n=1in[αn1Mo1n,ξr(3)(cI,ξ,η,ϕ)iβn1Ne1n,ξr(3)(cI,ξ,η,ϕ)],
Eηs=E0n=1in[αn1Mo1n,ηr(3)(cI,ξ,η,ϕ)iβn1Ne1n,ηr(3)(cI,ξ,η,ϕ)],
Eϕs=E0n=1in[αn1Mo1n,ϕr(3)(cI,ξ,η,ϕ)iβn1Ne1n,ϕr(3)(cI,ξ,η,ϕ)].
Eξw=E0n=1in[γn1Mo1n,ξr(1)(cII,ξ,η,ϕ)iδn1Ne1n,ξr(1)(cII,ξ,η,ϕ)],
Eηw=E0n=1in[γn1Mo1n,ηr(1)(cII,ξ,η,ϕ)iδn1Ne1n,ηr(1)(cII,ξ,η,ϕ)],
Eϕw=E0n=1in[γn1Mo1n,ϕr(1)(cII,ξ,η,ϕ)iδn1Ne1n,ϕr(1)(cII,ξ,η,ϕ)].
Is=EsEs*=EηsEηs*+EξsEξs*+EϕsEϕs*,
Iw=EwEw*=EηwEηw*+EξwEξw*+EϕwEϕw*,
cIicI,cIIicII,ξiξ.
Mmn=Mmn,ξξ^+Mmn,ηη^+Mmn,ϕϕ^,
Nmn=Nmn,ξξ^+Nmn,ηη^+Nmn,ϕϕ^,
Mmn,ξr(i)=imη[(ξ2η2)(ξ21)]12R|m|n(i)(c,ξ)×S|m|n(c,η)exp(imϕ),
Mmn,ηr(i)=imξ[(ξ2η2)(1η2)]12R|m|n(i)(c,ξ)×S|m|n(c,η)exp(imϕ),
Mmn,ϕr(i)=[(ξ21)(1η2)]12(ξ2η2)[ξR|m|n(i)(c,ξ)S|m|n(c,η)ηR|m|n(i)(c,ξ)S|m|n(c,η)]exp(imϕ),
Nmn,ξr(i)=(ξ21)12c(ξ2η2)32{ξ[λ|m|nc2η2+m2(ξ21)]×S|m|n(c,η)R|m|n(i)(c,ξ)2ξη(1η2)(ξ2η2)S|m|n(c,η)R|m|n(i)(c,ξ)+η(1η2)S|m|n(c,η)R|m|n(i)(c,ξ)+ξ2(13η2)+η2(η2+1)(ξ2η2)S|m|n(c,η)R|m|n(i)(c,ξ)}×exp(imϕ),
Nmn,ηr(i)=(1η2)12c(ξ2η2)32{ξ(ξ21)R|m|n(i)(c,ξ)S|m|n(c,η)+ξ2(ξ2+1)+η2(13ξ2)(ξ2η2)×R|m|n(i)(c,ξ)S|m|n(c,η)η[λ|m|nξ2c2m2(1η2)]×R|m|n(i)(c,ξ)S|m|n(c,η)+2ξη(ξ21)(ξ2η2)R|m|n(i)(c,ξ)S|m|n(c,η)}exp(imϕ),
Nmn,ϕr(i)=im[(ξ21)(1η2)]12c(ξ2η2)×[η(ξ21)R|m|n(i)(c,ξ)S|m|n(c,η)+ξ(1η2)R|m|n(i)(c,ξ)S|m|n(c,η)+(ξ2η2)(ξ21)(1η2)R|m|n(i)(c,ξ)S|m|n(c,η)]×exp(imϕ),
M(eo)mn,ξr(i)=mη[(ξ2η2)(ξ21)]12R|m|n(i)(c,ξ)S|m|n(c,η)×(sin(mϕ)cos(mϕ)),
M(eo)mn,ηr(i)=mξ[(ξ2η2)(1η2)]12R|m|n(i)(c,ξ)S|m|n(c,η)×(sin(mϕ)cos(mϕ)),
M(eo)mn,ϕr(i)=[(ξ21)(1η2)]12(ξ2η2)[ξR|m|n(i)(c,ξ)S|m|n(c,η)ηR|m|n(i)(c,ξ)S|m|n(c,η)](cos(mϕ)sin(mϕ)),
N(eo)mn,ξr(i)=(ξ21)12c(ξ2η2)32{ξ[λ|m|nc2η2+m2(ξ21)]×S|m|n(c,η)R|m|n(i)(c,ξ)2ξη(1η2)(ξ2η2)S|m|n(c,η)R|m|n(i)(c,ξ)+η(1η2)S|m|n(c,η)R|m|n(i)(c,ξ)+ξ2(13η2)+η2(η2+1)(ξ2η2)×S|m|n(c,η)R|m|n(i)(c,ξ)}(cos(mϕ)sin(mϕ)),
N(eo)mn,ηr(i)=(1η2)12c(ξ2η2)32{ξ(ξ21)R|m|n(i)(c,ξ)S|m|n(c,η)+ξ2(ξ2+1)+η2(13ξ2)(ξ2η2)R|m|n(i)(c,ξ)S|m|n(c,η)η[λ|m|nξ2c2m2(1η2)]R|m|n(i)(c,ξ)S|m|n(c,η)+2ξη(ξ21)(ξ2η2)R|m|n(i)(c,ξ)S|m|n(c,η)}(cos(mϕ)sin(mϕ)),
N(eo)mn,ϕr(i)=m[(ξ21)(1η2)]12c(ξ2η2)×[η(ξ21)R|m|n(i)(c,ξ)S|m|n(c,η)+ξ(1η2)R|m|n(i)(c,ξ)S|m|n(c,η)+(ξ2η2)(ξ21)(1η2)R|m|n(i)(c,ξ)S|m|n(c,η)]×(sin(mϕ)cos(mϕ)).

Metrics