Abstract

We have studied a new heterogeneous liquid-crystalline material where H-bonded polymer–azo-dye complexes are used as dopants to the liquid crystal (LC) bulk at a very low concentration. Double enhancement of the holographic gratings’ diffraction efficiency occurred in the complex-doped LC compared to dye-doped LC. The grating formation/relaxation processes in complex-doped LC showed anomalies that were explained by the presence of polymer with H bonds. The gratings appeared to be formed due to a change of both the absorption coefficient and refractive index. Using such complexes as dopants gives perspectives for tuning and control of the LC properties, and for possible optical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992).
    [CrossRef]
  2. I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
    [CrossRef]
  3. I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).
  4. A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
    [CrossRef]
  5. L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
    [CrossRef]
  6. L. Lucchetti and F. Simoni, “Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red,” Phys. Rev. E 89, 032507 (2014).
    [CrossRef]
  7. E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
    [CrossRef]
  8. E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1, 1463–1470 (2011).
    [CrossRef]
  9. E. Ouskova and M. Kaivola, “Nonlinear optical response of self-orienting liquid crystal,” Opt. Mater. Express 2, 1056–1063 (2012).
    [CrossRef]
  10. A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
    [CrossRef]
  11. J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
    [CrossRef]
  12. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980).
    [CrossRef]
  13. W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123–134 (1967).
    [CrossRef]
  14. S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].
  15. P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University, 1996).
  16. R. J. Collier, C. B. Burkhardt, and L. H. Lin, Optical Holography (Academic, 1971), Section 8.5.
  17. L. Song, R. A. Lessard, and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
    [CrossRef]
  18. V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
    [CrossRef]
  19. M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt. 48, 393–396 (2009).
    [CrossRef]
  20. C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater. 7, 899–903 (1995).
    [CrossRef]
  21. I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
    [CrossRef]
  22. W. R. Brode, J. H. Gould, and G. M. Wyman, “The relation between the absorption spectra and the chemical constitution of dyes XXV. Phototropism and cis-trans isomerism in aromatic azo compounds,” J. Am. Chem. Soc. 74, 4641–4646 (1952).
    [CrossRef]
  23. A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers,” Macromol. Rapid Commun. 32, 672–678 (2011).
  24. H. M. D. Bandara and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809–1825 (2012).
    [CrossRef]
  25. S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999).
    [CrossRef]
  26. H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier Science, 2003).
  27. G. Granucci and M. Persico, “Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study,” Theor. Chem. Acc. 117, 1131–1143 (2007).
    [CrossRef]
  28. M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013).
    [CrossRef]
  29. C. H. Kwak and H. R. Yang, “Determinations of optical field induced nonlinearities in azo dye doped polymer film,” in Polymer Thin Films, A. A. Hashim, ed. (InTech, 2010), pp. 309–324.
  30. T. Fujino and T. Tahara, “Picosecond time-resolved Raman study of trans-azobenzene,” J. Phys. Chem. A 104, 4203–4210 (2000).
    [CrossRef]
  31. C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004).
    [CrossRef]
  32. I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
    [CrossRef]
  33. S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).
  34. D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys. 118, 3222–3232 (2003).
    [CrossRef]

2014 (1)

L. Lucchetti and F. Simoni, “Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red,” Phys. Rev. E 89, 032507 (2014).
[CrossRef]

2013 (2)

A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
[CrossRef]

M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013).
[CrossRef]

2012 (2)

H. M. D. Bandara and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809–1825 (2012).
[CrossRef]

E. Ouskova and M. Kaivola, “Nonlinear optical response of self-orienting liquid crystal,” Opt. Mater. Express 2, 1056–1063 (2012).
[CrossRef]

2011 (4)

E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1, 1463–1470 (2011).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers,” Macromol. Rapid Commun. 32, 672–678 (2011).

2010 (1)

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

2009 (1)

2008 (3)

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

2007 (1)

G. Granucci and M. Persico, “Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study,” Theor. Chem. Acc. 117, 1131–1143 (2007).
[CrossRef]

2005 (1)

V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
[CrossRef]

2004 (1)

C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004).
[CrossRef]

2003 (1)

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys. 118, 3222–3232 (2003).
[CrossRef]

2001 (1)

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

2000 (1)

T. Fujino and T. Tahara, “Picosecond time-resolved Raman study of trans-azobenzene,” J. Phys. Chem. A 104, 4203–4210 (2000).
[CrossRef]

1999 (1)

S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999).
[CrossRef]

1998 (1)

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

1995 (1)

C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater. 7, 899–903 (1995).
[CrossRef]

1992 (1)

I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992).
[CrossRef]

1990 (1)

L. Song, R. A. Lessard, and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

1983 (1)

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

1982 (1)

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].

1980 (1)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

1967 (1)

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123–134 (1967).
[CrossRef]

1952 (1)

W. R. Brode, J. H. Gould, and G. M. Wyman, “The relation between the absorption spectra and the chemical constitution of dyes XXV. Phototropism and cis-trans isomerism in aromatic azo compounds,” J. Am. Chem. Soc. 74, 4641–4646 (1952).
[CrossRef]

Alasaarela, T.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

Babayan, E. A.

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

Bandara, H. M. D.

H. M. D. Bandara and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809–1825 (2012).
[CrossRef]

Barnik, M. I.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

Barrett, C.

C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater. 7, 899–903 (1995).
[CrossRef]

Bobrovsky, A. Yu.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

Boiko, N. I.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

Bouas-Laurent, H.

H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier Science, 2003).

Brode, W. R.

W. R. Brode, J. H. Gould, and G. M. Wyman, “The relation between the absorption spectra and the chemical constitution of dyes XXV. Phototropism and cis-trans isomerism in aromatic azo compounds,” J. Am. Chem. Soc. 74, 4641–4646 (1952).
[CrossRef]

Brodyn, M.

V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
[CrossRef]

Brodyn, M. S.

A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
[CrossRef]

Budagovsky, I. A.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

Burdette, S. C.

H. M. D. Bandara and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809–1825 (2012).
[CrossRef]

Burkhardt, C. B.

R. J. Collier, C. B. Burkhardt, and L. H. Lin, Optical Holography (Academic, 1971), Section 8.5.

Chang, C.-W.

C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004).
[CrossRef]

Chen, P. H.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

Collier, R. J.

R. J. Collier, C. B. Burkhardt, and L. H. Lin, Optical Holography (Academic, 1971), Section 8.5.

Cook, B. D.

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123–134 (1967).
[CrossRef]

Copic, M.

M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013).
[CrossRef]

de Araújo, M. A.

de Lima, E.

de Oliveira, P. C.

Diau, E. W.-G.

C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004).
[CrossRef]

Dürr, H.

H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier Science, 2003).

Finkelmann, H.

A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers,” Macromol. Rapid Commun. 32, 672–678 (2011).

Foggi, P.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Fujino, T.

T. Fujino and T. Tahara, “Picosecond time-resolved Raman study of trans-azobenzene,” J. Phys. Chem. A 104, 4203–4210 (2000).
[CrossRef]

Galarneau, P.

L. Song, R. A. Lessard, and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

Gayvoronsky, V.

V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
[CrossRef]

Gayvoronsky, V. Ya.

A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
[CrossRef]

Gentili, M.

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

Gould, J. H.

W. R. Brode, J. H. Gould, and G. M. Wyman, “The relation between the absorption spectra and the chemical constitution of dyes XXV. Phototropism and cis-trans isomerism in aromatic azo compounds,” J. Am. Chem. Soc. 74, 4641–4646 (1952).
[CrossRef]

Granucci, G.

G. Granucci and M. Persico, “Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study,” Theor. Chem. Acc. 117, 1131–1143 (2007).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University, 1996).

Hester, R. E.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Janossy, I.

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys. 118, 3222–3232 (2003).
[CrossRef]

Kaivola, M.

E. Ouskova and M. Kaivola, “Nonlinear optical response of self-orienting liquid crystal,” Opt. Mater. Express 2, 1056–1063 (2012).
[CrossRef]

E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1, 1463–1470 (2011).
[CrossRef]

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

Khizhnyak, A. I.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].

Khoo, I. C.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

Klein, W. R.

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123–134 (1967).
[CrossRef]

Kneževic, M.

M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013).
[CrossRef]

Kwak, C. H.

C. H. Kwak and H. R. Yang, “Determinations of optical field induced nonlinearities in azo dye doped polymer film,” in Polymer Thin Films, A. A. Hashim, ed. (InTech, 2010), pp. 309–324.

Lednev, I. K.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Lessard, R. A.

L. Song, R. A. Lessard, and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burkhardt, and L. H. Lin, Optical Holography (Academic, 1971), Section 8.5.

Lu, Y.-C.

C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004).
[CrossRef]

Lucchetti, L.

L. Lucchetti and F. Simoni, “Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red,” Phys. Rev. E 89, 032507 (2014).
[CrossRef]

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

Lysachkov, A. I.

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

Magnusson, R.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

Mamiya, J.-I.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

Matousek, P.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Mayer, S. G.

S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999).
[CrossRef]

Merekalov, A.

A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers,” Macromol. Rapid Commun. 32, 672–678 (2011).

Moharam, M. G.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

Moore, J. N.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Natansohn, A.

C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater. 7, 899–903 (1995).
[CrossRef]

Nazarenko, V.

V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
[CrossRef]

Neuwahl, F. V. R.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Ochkin, V. N.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

Odulov, S. G.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].

Ouskova, E.

Ouskova, E. V.

A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
[CrossRef]

Pavliuchenko, S.

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

Pereira, D. P.

Persico, M.

G. Granucci and M. Persico, “Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study,” Theor. Chem. Acc. 117, 1131–1143 (2007).
[CrossRef]

Philpott, M. P.

S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999).
[CrossRef]

Pinkevich, I. P.

I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992).
[CrossRef]

Priimagi, A.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

Reid, P. J.

S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999).
[CrossRef]

Reshetnyak, V.

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

Reshetnyak, V. Yu.

I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992).
[CrossRef]

Reznikov, Yu. A.

I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992).
[CrossRef]

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].

Rochon, P.

C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater. 7, 899–903 (1995).
[CrossRef]

Sánchez-Ferrer, A.

M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013).
[CrossRef]

A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers,” Macromol. Rapid Commun. 32, 672–678 (2011).

Shibaev, V. P.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

Shih, M. Y.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

Shishido, A.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

Shvetsov, S. A.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

Silva, R.

Simoni, F.

L. Lucchetti and F. Simoni, “Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red,” Phys. Rev. E 89, 032507 (2014).
[CrossRef]

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

Slussarenko, S.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

Smayev, M. P.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

Song, L.

L. Song, R. A. Lessard, and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

Soskin, M. S.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].

Starkov, V.

V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
[CrossRef]

Statman, D.

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys. 118, 3222–3232 (2003).
[CrossRef]

Subota, S.

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

Tahara, T.

T. Fujino and T. Tahara, “Picosecond time-resolved Raman study of trans-azobenzene,” J. Phys. Chem. A 104, 4203–4210 (2000).
[CrossRef]

Thomsen, C. L.

S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999).
[CrossRef]

Towrie, M.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Uklein, A. V.

A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
[CrossRef]

Umapathy, S.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Valtavirta, V.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

Vapaavuori, J.

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1, 1463–1470 (2011).
[CrossRef]

Vasko, A. A.

A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
[CrossRef]

Wang, T.-T.

C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004).
[CrossRef]

Warner, M.

M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013).
[CrossRef]

Wood, M. V.

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

Wyman, G. M.

W. R. Brode, J. H. Gould, and G. M. Wyman, “The relation between the absorption spectra and the chemical constitution of dyes XXV. Phototropism and cis-trans isomerism in aromatic azo compounds,” J. Am. Chem. Soc. 74, 4641–4646 (1952).
[CrossRef]

Yakunin, S.

V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
[CrossRef]

Yang, H. R.

C. H. Kwak and H. R. Yang, “Determinations of optical field induced nonlinearities in azo dye doped polymer film,” in Polymer Thin Films, A. A. Hashim, ed. (InTech, 2010), pp. 309–324.

Yaroshchuk, O. V.

I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992).
[CrossRef]

Ye, T. Q.

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Zolot’ko, A. S.

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

Appl. Opt. (1)

Chem. Mater. (1)

C. Barrett, A. Natansohn, and P. Rochon, “Cis-trans thermal isomerization rates of bound and doped azobenzenes in a series of polymers,” Chem. Mater. 7, 899–903 (1995).
[CrossRef]

Chem. Phys. Lett. (2)

S. G. Mayer, C. L. Thomsen, M. P. Philpott, and P. J. Reid, “The solvent-dependent isomerization dynamics of 4-(Dimethylamino)azobenzene (DMAAB) studied by subpicosecond pump-probe spectroscopy,” Chem. Phys. Lett. 314, 246–254 (1999).
[CrossRef]

I. K. Lednev, T. Q. Ye, P. Matousek, M. Towrie, P. Foggi, F. V. R. Neuwahl, S. Umapathy, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV-visible absorption spectroscopy of trans-azobenzene: dependence on excitation wavelength,” Chem. Phys. Lett. 290, 68–74 (1998).
[CrossRef]

Chem. Soc. Rev. (1)

H. M. D. Bandara and S. C. Burdette, “Photoisomerization in different classes of azobenzene,” Chem. Soc. Rev. 41, 1809–1825 (2012).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123–134 (1967).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

I. P. Pinkevich, Yu. A. Reznikov, V. Yu. Reshetnyak, and O. V. Yaroshchuk, “Conformational optical nonlinearity of nematic liquid crystals,” Int. J. Nonlinear Opt. Phys. 1, 447–472 (1992).
[CrossRef]

J. Am. Chem. Soc. (2)

W. R. Brode, J. H. Gould, and G. M. Wyman, “The relation between the absorption spectra and the chemical constitution of dyes XXV. Phototropism and cis-trans isomerism in aromatic azo compounds,” J. Am. Chem. Soc. 74, 4641–4646 (1952).
[CrossRef]

C.-W. Chang, Y.-C. Lu, T.-T. Wang, and E. W.-G. Diau, “Photoisomerization dynamics of azobenzene in solution with S1 excitation: a femtosecond fluorescence anisotropy study,” J. Am. Chem. Soc. 126, 10109–10118 (2004).
[CrossRef]

J. Chem. Phys. (1)

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys. 118, 3222–3232 (2003).
[CrossRef]

J. Exp. Theor. Phys. (1)

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity induced by comb-shaped polymers in a nematic liquid crystal,” J. Exp. Theor. Phys. 106, 172–181 (2008).
[CrossRef]

J. Mater. Chem. (1)

J. Vapaavuori, V. Valtavirta, T. Alasaarela, J.-I. Mamiya, A. Priimagi, A. Shishido, and M. Kaivola, “Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexes through rational chromophore design,” J. Mater. Chem. 21, 15437–15441 (2011).
[CrossRef]

J. Mod. Opt. (1)

L. Song, R. A. Lessard, and P. Galarneau, “Diffraction efficiency of a thin amplitude-phase holographic grating: a convolution approach,” J. Mod. Opt. 37, 1319–1328 (1990).
[CrossRef]

J. Phys. Chem. A (1)

T. Fujino and T. Tahara, “Picosecond time-resolved Raman study of trans-azobenzene,” J. Phys. Chem. A 104, 4203–4210 (2000).
[CrossRef]

Macromol. Rapid Commun. (1)

A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers,” Macromol. Rapid Commun. 32, 672–678 (2011).

Mol. Cryst. Liq. Cryst. (3)

V. Gayvoronsky, S. Yakunin, V. Nazarenko, V. Starkov, and M. Brodyn, “Techniques to characterize the nonlinear optical response of doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 426, 231–241 (2005).
[CrossRef]

I. C. Khoo, P. H. Chen, M. Y. Shih, A. Shishido, S. Slussarenko, and M. V. Wood, “Supra optical nonlinearities of methyl-red and azobenzene liquid crystal-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 358, 1–13 (2001).
[CrossRef]

A. S. Zolot’ko, I. A. Budagovsky, V. N. Ochkin, M. P. Smayev, A. Yu. Bobrovsky, V. P. Shibaev, N. I. Boiko, A. I. Lysachkov, and M. I. Barnik, “Light-induced director reorientation in nematic liquid crystals doped with azobenzene-containing macromolecules of different architecture,” Mol. Cryst. Liq. Cryst. 488, 265–278 (2008).
[CrossRef]

Opt. Commun. (2)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman–Nath regime diffraction by phase gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

A. V. Uklein, A. A. Vasko, E. V. Ouskova, M. S. Brodyn, and V. Ya. Gayvoronsky, “Nonlinear optical properties of new photosensitive smart materials based on nematic liquid crystal with H-bonded dye-polymer complex,” Opt. Commun. 296, 79–83 (2013).
[CrossRef]

Opt. Mater. Express (2)

Phys. Rev. E (4)

L. Lucchetti, M. Gentili, F. Simoni, S. Pavliuchenko, S. Subota, and V. Reshetnyak, “Surface-induced nonlinearities of liquid crystals driven by an electric field,” Phys. Rev. E 78, 061706 (2008).
[CrossRef]

L. Lucchetti and F. Simoni, “Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red,” Phys. Rev. E 89, 032507 (2014).
[CrossRef]

E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, “Light- and electric-field-induced first-order orientation transitions in a dendrimer-doped nematic liquid crystal,” Phys. Rev. E 82, 061705 (2010).
[CrossRef]

M. Knežević, M. Warner, M. Čopič, and A. Sánchez-Ferrer, “Photodynamics of stress in clamped nematic elastomers,” Phys. Rev. E 87, 062503 (2013).
[CrossRef]

Polym. Sci. Ser. A (1)

I. A. Budagovsky, A. S. Zolot’ko, V. N. Ochkin, M. P. Smayev, S. A. Shvetsov, A. Yu. Bobrovsky, N. I. Boiko, V. P. Shibaev, and M. I. Barnik, “Orientational optical nonlinearity of nematic liquid crystals induced by high-molecular-mass azo-containing compounds,” Polym. Sci. Ser. A 53, 655–665 (2011).

Sov. Phys. JETP (1)

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase-transition temperature and "giant" optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

Theor. Chem. Acc. (1)

G. Granucci and M. Persico, “Excited state dynamics with the direct trajectory surface hopping method: azobenzene and its derivatives as a case study,” Theor. Chem. Acc. 117, 1131–1143 (2007).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated transformation of molecules—a new type of “giant” optical nonlinearity in liquid crystals,” Zh. Eksp. Teor. Fiz. 82, 1475 (1982) [Sov. Phys. JETP 55, 854 (1982)].

Other (4)

P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University, 1996).

R. J. Collier, C. B. Burkhardt, and L. H. Lin, Optical Holography (Academic, 1971), Section 8.5.

C. H. Kwak and H. R. Yang, “Determinations of optical field induced nonlinearities in azo dye doped polymer film,” in Polymer Thin Films, A. A. Hashim, ed. (InTech, 2010), pp. 309–324.

H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier Science, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Chemical structures of (a) the LC 5CB, (b) polymer P4VP, and (c) azo dye (HAB–DMA). (d) 3D sketch of the polymer–azo-dye complex.

Fig. 2.
Fig. 2.

Polarization absorption spectra of 5CB+0.5% P4VP (HABDMA)0.5 before (A and A) and at irradiation (A,irr. and A,irr.) with e-wave of 457 nm laser of 300mW/cm2. The thickness of the cells was 20 μm.

Fig. 3.
Fig. 3.

(a) Experimental setup for grating recording: Mf, flip mirror; M, mirror; BS, beam splitters; P, polarizers; F, filter to cut recording beams; D1, D2, photodiodes for measuring diffracted beam intensities; D3, photodiode for measuring test beam incident intensity; α, angle between recording beams and (b) experimental setup for detecting of light-induced changes of the total and on-axis transmittances with one recording beam of Ar-ion laser: Mf is absent; D4, photodiode for measuring total intensity; D5, photodiode for measuring total transmittance just after the cell; D6, photodiode for measuring on-axis transmittance at a distance of 75 cm from the cell.

Fig. 4.
Fig. 4.

(a) Dependence of the saturated stationary diffraction efficiency ηsat of the first-order diffraction of the test beam in the complex-doped and azo-dye-doped LC on intensity (the grating period is Λ=30μm). (b) Dependence of the stationary diffraction efficiency on the grating period (the total intensity I0=30mW/cm2) in the complex-doped LC. The recording and test beams were parallel to the LC director (e-waves).

Fig. 5.
Fig. 5.

Dynamics of the first-order diffraction efficiency at grating recording in the complex-doped LC. The grating period is Λ=30μm.

Fig. 6.
Fig. 6.

(a) Dynamics of the normalized total transmittance Ttotal of the complex-doped LC irradiated with e and o waves and (b) dependence of the saturated value Tsat,total on intensity at e-wave irradiation. The transmittances were normalized to the spectral transmittance at 457 nm before irradiation.

Fig. 7.
Fig. 7.

(a) Dynamics of the normalized on-axis transmittance Ton-axis of the complex-doped LC irradiated with e and o waves (Ton-axis normalized to the spectral transmittance at 457 nm before irradiation). (b) Value of the normalized on-axis transmittance after saturation Tsat,on-axis versus pump intensity. (c) Dynamics of the normalized on-axis to total transmittance of the complex-doped and azo-dye-doped LCs.

Fig. 8.
Fig. 8.

Dependence of the grating relaxation in the complex-doped LC: (a) on the period (the total intensity I0=30mW/cm2) and (b) on the total intensity of the recording beams (grating period is Λ=30μm). The recording and test beam polarizations were parallel to the LC director (e-waves).

Fig. 9.
Fig. 9.

UV–Vis deconvoluted spectra of the complex P4VP(HABDMA)0.5 in the 5CB matrix (a) before irradiation and (b) at irradiation with e-wave of 457 nm laser of 300mW/cm2. The thickness of the cells was 20 μm.

Tables (1)

Tables Icon

Table 1. Number of Orders Observed in the Diffraction of the Test Beam and in the Self-Diffraction in Different Irradiation Geometries of the Complex-Doped LC

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I=I0(1+2I1I2(I1+I2)cos(2πx/Λ))=I0(1+cos(2πx/Λ)),
η=Id,test±1/Itest=J12(2πLΔn(I0)/λtest)|πLΔn(I0)/λtest|2,
SLCSdye=(Amax,||Amax,)/(Amax,||+2Amax,),
cS(x)1+S(x)[1exp{(1+S(x))(tτ)β}].

Metrics