Abstract

Photonic components based on structured metallic elements show great potential for device applications where field enhancement and confinement of the radiation on a subwavelength scale is required. In this paper, we report on a detailed study of a prototypical metallo-dielectric photonic structure, where features well known in the world of dielectric photonic crystals such as bandgaps and defect modes are exported to the metallic counterpart. Such a structure may have interesting applications in infrared science and technology, for instance, in quantum well infrared photodetectors, narrowband spectral filters, and tailorable thermal emitters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
    [CrossRef]
  3. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
    [CrossRef]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  5. M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
    [CrossRef]
  6. S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
    [CrossRef]
  7. L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
    [CrossRef]
  8. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
    [CrossRef]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef]
  10. T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
    [CrossRef]
  11. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36, 3054–3056 (2011).
    [CrossRef]
  12. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1d to 2d structures,” Opt. Express 20, 13082–13090 (2012).
    [CrossRef]
  13. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [CrossRef]
  14. S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
    [CrossRef]
  15. S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008).
    [CrossRef]
  16. S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
    [CrossRef]
  17. D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E 69, 056603 (2004).
    [CrossRef]
  18. The presence of air above the metal can be neglected since the penetration depth in the metal is smaller than its thickness. In this paper, we assumed εM=−4000 with no imaginary part.
  19. The analysis of the f-dependence of spectral features and bandgap is not immediate, and the interested reader can refer to Refs. [23] and [30] for further details.
  20. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in tm polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).
    [CrossRef]
  21. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [CrossRef]
  22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication (Oxford University, 2007).
  23. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
    [CrossRef]
  24. J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).
  25. J.-M. Manceau, S. Zanotto, and R. Colombelli, “Optical critical coupling into highly confining metal-insulator-metal resonators,” Appl. Phys. Lett. 103, 091110 (2013).
    [CrossRef]
  26. With these structures, a Q-factor as large as 100 can be attained without losing coupling efficiency. While not a large value in absolute terms, it is among the largest observed in mid-infrared photonic devices.
  27. H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
    [CrossRef]
  28. The proposed analysis disregards the coupling with light propagating out of the xz plane. It can be argued that, by implementing a defect mode in a square lattice, full control of the directionality around normal incidence can be attained.
  29. As for the photonic resonances of the sample without defect, this is attributed to sample nonplanarity and lithographic imperfections.
  30. S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
    [CrossRef]

2013 (2)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

J.-M. Manceau, S. Zanotto, and R. Colombelli, “Optical critical coupling into highly confining metal-insulator-metal resonators,” Appl. Phys. Lett. 103, 091110 (2013).
[CrossRef]

2012 (3)

S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1d to 2d structures,” Opt. Express 20, 13082–13090 (2012).
[CrossRef]

2011 (3)

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36, 3054–3056 (2011).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

2010 (1)

S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
[CrossRef]

2009 (1)

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

2008 (3)

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef]

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008).
[CrossRef]

2006 (2)

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef]

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

2005 (1)

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

2004 (2)

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E 69, 056603 (2004).
[CrossRef]

2003 (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1996 (1)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Andreani, L. C.

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E 69, 056603 (2004).
[CrossRef]

Andrews, A. M.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008).
[CrossRef]

Barbieri, S.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

Bardou, N.

Beere, H. E.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Belkin, M. A.

Beltram, F.

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Benisty, H.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).

Berger, V.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).

Biasiol, G.

S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
[CrossRef]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef]

Capasso, F.

Chassagneux, Y.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

Christ, A.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

Cole, G. D.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

Collin, S.

Colombelli, R.

J.-M. Manceau, S. Zanotto, and R. Colombelli, “Optical critical coupling into highly confining metal-insulator-metal resonators,” Appl. Phys. Lett. 103, 091110 (2013).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

Davies, A. G.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Degl’Innocenti, R.

S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
[CrossRef]

Detz, H.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

Drachenko, O.

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

Dupuis, C.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Faist, J.

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

Fan, J. A.

Fan, S.

Gansch, R.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

Gerace, D.

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E 69, 056603 (2004).
[CrossRef]

Gerard, J.-M.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ghenuche, P.

Giessen, H.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Gippius, N. A.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Granet, G.

Guizal, B.

Haïdar, R.

Helm, M.

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

Hsu, C. W.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[CrossRef]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Kalchmair, S.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

Khanna, S.

Khanna, S. P.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

Klang, P.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008).
[CrossRef]

Klein, M. W.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

Kohler, R.

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Kuhl, J.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Lachab, M.

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Linden, S.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

Linfield, E. H.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Liu, H. C.

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Lourtioz, J. M.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).

Mahler, L.

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Maineult, W.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

Manceau, J.-M.

J.-M. Manceau, S. Zanotto, and R. Colombelli, “Optical critical coupling into highly confining metal-insulator-metal resonators,” Appl. Phys. Lett. 103, 091110 (2013).
[CrossRef]

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef]

Maystre, D.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).

Nau, D.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

Nobile, M.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008).
[CrossRef]

Ostermaier, C.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Pardo, F.

Pelouard, J.-L.

Ritchie, D. A.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Sakat, E.

Schartner, S.

Schneider, H.

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

Schrenk, W.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008).
[CrossRef]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef]

Soljai, M.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

Sorba, L.

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
[CrossRef]

S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Strasser, G.

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

S. Schartner, M. Nobile, W. Schrenk, A. M. Andrews, P. Klang, and G. Strasser, “Photocurrent response from photonic crystal defect modes,” Opt. Express 16, 4797–4803 (2008).
[CrossRef]

Suh, W.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tikhodeev, S. G.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Tredicucci, A.

S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
[CrossRef]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

Tritschler, T.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Vincent, G.

Wegener, M.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

Winnerl, S.

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xu, J.-H.

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication (Oxford University, 2007).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication (Oxford University, 2007).

Zanotto, S.

J.-M. Manceau, S. Zanotto, and R. Colombelli, “Optical critical coupling into highly confining metal-insulator-metal resonators,” Appl. Phys. Lett. 103, 091110 (2013).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
[CrossRef]

S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
[CrossRef]

Zentgraf, T.

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

Zhen, B.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

Appl. Phys. Lett. (5)

S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, and A. Tredicucci, “Intersubband polaritons in a one-dimensional surface plasmon photonic crystal,” Appl. Phys. Lett. 97, 231123 (2010).
[CrossRef]

L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, “Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators,” Appl. Phys. Lett. 84, 5446–5448 (2004).
[CrossRef]

S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98, 011105 (2011).
[CrossRef]

J.-M. Manceau, S. Zanotto, and R. Colombelli, “Optical critical coupling into highly confining metal-insulator-metal resonators,” Appl. Phys. Lett. 103, 091110 (2013).
[CrossRef]

H. Schneider, H. C. Liu, S. Winnerl, O. Drachenko, M. Helm, and J. Faist, “Room-temperature midinfrared two-photon photodetector,” Appl. Phys. Lett. 93, 101114 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature (3)

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljai, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, and G. Biasiol, “Analysis of line shapes and strong coupling with intersubband transitions in one-dimensional metallodielectric photonic crystal slabs,” Phys. Rev. B 85, 035307 (2012).
[CrossRef]

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005).
[CrossRef]

T. Zentgraf, A. Christ, J. Kuhl, N. A. Gippius, S. G. Tikhodeev, D. Nau, and H. Giessen, “Metallodielectric photonic crystal superlattices: influence of periodic defects on transmission properties,” Phys. Rev. B 73, 115103 (2006).
[CrossRef]

S. Zanotto, R. Degl’Innocenti, J.-H. Xu, L. Sorba, A. Tredicucci, and G. Biasiol, “Ultrafast optical bleaching of intersubband cavity polaritons,” Phys. Rev. B 86, 201302 (2012).
[CrossRef]

Phys. Rev. E (1)

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E 69, 056603 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Other (7)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication (Oxford University, 2007).

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, and D. Maystre, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2008).

The presence of air above the metal can be neglected since the penetration depth in the metal is smaller than its thickness. In this paper, we assumed εM=−4000 with no imaginary part.

The analysis of the f-dependence of spectral features and bandgap is not immediate, and the interested reader can refer to Refs. [23] and [30] for further details.

The proposed analysis disregards the coupling with light propagating out of the xz plane. It can be argued that, by implementing a defect mode in a square lattice, full control of the directionality around normal incidence can be attained.

As for the photonic resonances of the sample without defect, this is attributed to sample nonplanarity and lithographic imperfections.

With these structures, a Q-factor as large as 100 can be attained without losing coupling efficiency. While not a large value in absolute terms, it is among the largest observed in mid-infrared photonic devices.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(i) Schematic representation of one supercell of the photonic crystal slab: a dielectric membrane with permittivity εD>0 patterned with metal strips with permittivity εM<0. (ii) Guided modes supported by the metallo-dielectric (MD) and air-dielectric (AD) planar waveguides involved in the analysis of the photonic crystal response. The insets represent the Ez field profile at the selected photon energy E=140meV, where only the first-order modes are relevant. The horizontal dashed lines correspond to air and slab dielectric constants.

Fig. 2.
Fig. 2.

Photonic bands of the photonic crystal slab without defect emerging from transmittance and resonant intracavity field enhancement. The color maps are coded as follows: black, low; yellow, high. Green continuous (dashed) lines: folding of the first (second) mode of the MD planar waveguide in the first Brillouin zone. Cyan dash–dot line: 1° order diffraction cone in air. White areas correspond to incidence angles greater than 40° (experimental limit); gray areas correspond to points below the air light cone.

Fig. 3.
Fig. 3.

Photonic bandgap and defect mode promotion. A simplified 1-d ideal photonic crystal model is (i), (ii) proposed and (iii), (iv) confirmed by rigorous coupled-wave analysis transmittance calculations. UB (LB), upper (lower) branches; SB, stop band; DM, defect mode.

Fig. 4.
Fig. 4.

(Upper panels) Fingerprints of the defect mode in the photonic bandstructure from transmittance measurements on four samples without defects or with defects and an increasing number N of Bragg mirror periods. The white arrow shows the defect mode. (Lower panels) Photonic bands calculated in the 1-d ideal photonic crystal model with the optically active defect mode evidenced as a thicker line spanning the first Brillouin zone of the superlattice. The defect mode extends until the boundary of the Brillouin zone of the supercell, which is evidenced as a dashed gray line. (Right panel) Transmittance spectra at normal incidence (kx=0) with the defect mode (DM) and the upper branch (UB) in evidence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k0ε¯MD=|kx+mg|,
2arg(r)+2kdefLdef=2mπ,

Metrics