Abstract

In this paper, we report the fabrication and characterization of a V-shaped split ring resonator (SRR) metamaterial and have shown that it is possible to tune a negative refractive index by changing the angular gap of V-shaped SRR. Our experimental characterization results are well supported by simulation results using the FDTD method. The reported design of a V-shaped SRR structure has the distinctive advantage of having its capacitance varied by changing the angular gap between its arms. It is also observed that the electromagnetic parameters (such as permittivity and permeability) of metamaterials can be tuned as per our requirement by varying the angular gap.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref]
  3. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
    [Crossref]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref]
  8. S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
    [Crossref]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref]
  12. N. Engheta and W. Z. Richard, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  13. S. Zouhdi, S. Ari, and P. V. Alexey, Metamaterials and Plasmonics: Fundamentals, Modeling, Applications (Springer-Verlag, 2008).
  14. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref]
  15. V. G. Veselago, “Formulating Fermat’s principle for light travelling in negative refraction material,” Phys. Uspekhi 45, 1097–1099 (2002).
    [Crossref]
  16. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameter, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
    [Crossref]
  17. R. W. Ziolkowski and E. Heynman, “Wave propagation in media having negative permeability and permittivity,” Phys. Rev. E 64, 056625 (2001).
    [Crossref]
  18. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17, 1107–1115 (2009).
    [Crossref]
  19. V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
    [Crossref]
  20. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
  21. K. Kishor and R. K. Sinha, “Design of planar metamaterial optical resonator,” in International Conference on Fiber Optics and Photonics (Optical Society of America, 2012), paper M3B.5.
  22. R. Singh, C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, “Spiral-type terahertz antennas and the manifestation of the Mushiake principle,” Opt. Express 17, 9971–9980 (2009).
    [Crossref]
  23. K. Kishor and R. K. Sinha, “Design of planar metamaterial optical antenna,” Proc. SPIE 8457, 84572N (2012).
  24. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780  nm wavelength,” Opt. Lett. 32, 53–55 (2007).
    [Crossref]
  25. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split ring resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
    [Crossref]
  26. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
    [Crossref]
  27. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
    [Crossref]
  28. S. Tretyakov, “On geometrical scaling of split ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40–43 (2007).
  29. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, “Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs),” Opt. Express 18, 3210–3218 (2010).
    [Crossref]
  30. W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
    [Crossref]
  31. B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nanoletters 13, 3218–3224 (2013).
  32. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
    [Crossref]
  33. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of material by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
    [Crossref]
  34. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
  35. M. Iwanaga, “Effective optical constants in stratified metal-dielectric metamaterial,” Opt. Lett. 32, 1314–1316 (2007).
    [Crossref]
  36. P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003).
    [Crossref]
  37. E. Saenzz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, “On the definition of effective permittivity and permeability for thin composite layers,” J. Appl. Phys. 101, 114910 (2007).
    [Crossref]
  38. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
    [Crossref]
  39. R. A. Depine and A. Lakhtakia, “Comment I on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048601 (2004).
    [Crossref]
  40. A. L. Efros, “Comment II on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048602 (2004).
    [Crossref]
  41. Y. Minowa, T. Fujii, M. Nagai, T. O. K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16, 4785–4796 (2008).
    [Crossref]

2013 (1)

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nanoletters 13, 3218–3224 (2013).

2012 (1)

K. Kishor and R. K. Sinha, “Design of planar metamaterial optical antenna,” Proc. SPIE 8457, 84572N (2012).

2011 (1)

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (2)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

Y. Minowa, T. Fujii, M. Nagai, T. O. K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16, 4785–4796 (2008).
[Crossref]

2007 (5)

S. Tretyakov, “On geometrical scaling of split ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40–43 (2007).

M. Iwanaga, “Effective optical constants in stratified metal-dielectric metamaterial,” Opt. Lett. 32, 1314–1316 (2007).
[Crossref]

E. Saenzz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, “On the definition of effective permittivity and permeability for thin composite layers,” J. Appl. Phys. 101, 114910 (2007).
[Crossref]

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780  nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

2006 (5)

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split ring resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref]

2005 (2)

S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

2004 (3)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

R. A. Depine and A. Lakhtakia, “Comment I on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048601 (2004).
[Crossref]

A. L. Efros, “Comment II on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048602 (2004).
[Crossref]

2003 (2)

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003).
[Crossref]

2002 (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

V. G. Veselago, “Formulating Fermat’s principle for light travelling in negative refraction material,” Phys. Uspekhi 45, 1097–1099 (2002).
[Crossref]

2001 (4)

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameter, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
[Crossref]

R. W. Ziolkowski and E. Heynman, “Wave propagation in media having negative permeability and permittivity,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

1970 (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of material by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Akalin, T.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
[Crossref]

Aksyuk, V.

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nanoletters 13, 3218–3224 (2013).

Alexey, P. V.

S. Zouhdi, S. Ari, and P. V. Alexey, Metamaterials and Plasmonics: Fundamentals, Modeling, Applications (Springer-Verlag, 2008).

Anantha Ramakrishna, S.

S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[Crossref]

Ari, S.

S. Zouhdi, S. Ari, and P. V. Alexey, Metamaterials and Plasmonics: Fundamentals, Modeling, Applications (Springer-Verlag, 2008).

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).

Centrone, A.

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nanoletters 13, 3218–3224 (2013).

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Chen, W. C.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

De La Rue, R. M.

Depine, R. A.

R. A. Depine and A. Lakhtakia, “Comment I on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048601 (2004).
[Crossref]

Dolling, G.

Economu, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

Efros, A. L.

A. L. Efros, “Comment II on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048602 (2004).
[Crossref]

Engheta, N.

N. Engheta and W. Z. Richard, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Etrich, C.

Fedetov, V. A.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref]

Freymann, G. V.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

Fujii, T.

Giessen, H.

Gonzalo, R.

E. Saenzz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, “On the definition of effective permittivity and permeability for thin composite layers,” J. Appl. Phys. 101, 114910 (2007).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

He, M.

Heynman, E.

R. W. Ziolkowski and E. Heynman, “Wave propagation in media having negative permeability and permittivity,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

Hirao, K.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

Holland, G.

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nanoletters 13, 3218–3224 (2013).

Ikonen, P. M. T.

E. Saenzz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, “On the definition of effective permittivity and permeability for thin composite layers,” J. Appl. Phys. 101, 114910 (2007).
[Crossref]

Ilvonen, S.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameter, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
[Crossref]

Iwanaga, M.

Johnson, N. P.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

Khokhar, A. Z.

Kishor, K.

K. Kishor and R. K. Sinha, “Design of planar metamaterial optical antenna,” Proc. SPIE 8457, 84572N (2012).

K. Kishor and R. K. Sinha, “Design of planar metamaterial optical resonator,” in International Conference on Fiber Optics and Photonics (Optical Society of America, 2012), paper M3B.5.

Klein, M. W.

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

Kuhl, J.

Lahiri, B.

Lakhtakia, A.

R. A. Depine and A. Lakhtakia, “Comment I on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048601 (2004).
[Crossref]

Lederer, F.

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).

Lindell, I. V.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameter, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
[Crossref]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780  nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Markos, P.

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

McMeekin, S. G.

Menzel, C.

Meyrath, T. P.

Minowa, Y.

Mock, J. J.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Nagai, M.

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Nicolson, A. M.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of material by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[Crossref]

Nikoskinen, K. I.

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameter, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
[Crossref]

Padilla, W. J.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Papasimakis, N.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

Prosvirnin, S. L.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref]

Richard, W. Z.

N. Engheta and W. Z. Richard, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

Rockstuhl, C.

Rose, M.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref]

Ross, G. F.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of material by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[Crossref]

Saenzz, E.

E. Saenzz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, “On the definition of effective permittivity and permeability for thin composite layers,” J. Appl. Phys. 101, 114910 (2007).
[Crossref]

Sakoda, T. O. K.

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]

Singh, R.

Sinha, R. K.

K. Kishor and R. K. Sinha, “Design of planar metamaterial optical antenna,” Proc. SPIE 8457, 84572N (2012).

K. Kishor and R. K. Sinha, “Design of planar metamaterial optical resonator,” in International Conference on Fiber Optics and Photonics (Optical Society of America, 2012), paper M3B.5.

Smith, D. R.

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Soukoulis, C. M.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780  nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

P. Markos and C. M. Soukoulis, “Transmission properties and effective electromagnetic parameters of double negative metamaterials,” Opt. Express 11, 649–661 (2003).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

Steward, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

Tanaka, K.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

Tretyakov, S.

S. Tretyakov, “On geometrical scaling of split ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40–43 (2007).

Tretyakov, S. A.

E. Saenzz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, “On the definition of effective permittivity and permeability for thin composite layers,” J. Appl. Phys. 101, 114910 (2007).
[Crossref]

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameter, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
[Crossref]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).

Veselago, V. G.

V. G. Veselago, “Formulating Fermat’s principle for light travelling in negative refraction material,” Phys. Uspekhi 45, 1097–1099 (2002).
[Crossref]

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780  nm wavelength,” Opt. Lett. 32, 53–55 (2007).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Zentgraf, T.

Zhang, W.

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).

Zheludev, N. I.

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski and E. Heynman, “Wave propagation in media having negative permeability and permittivity,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

Zouhdi, S.

S. Zouhdi, S. Ari, and P. V. Alexey, Metamaterials and Plasmonics: Fundamentals, Modeling, Applications (Springer-Verlag, 2008).

Appl. Phys. Lett. (1)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of material by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

J. Appl. Phys. (1)

E. Saenzz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, “On the definition of effective permittivity and permeability for thin composite layers,” J. Appl. Phys. 101, 114910 (2007).
[Crossref]

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998).

Metamaterials (1)

S. Tretyakov, “On geometrical scaling of split ring and double-bar resonators at optical frequencies,” Metamaterials 1, 40–43 (2007).

Microwave Opt. Technol. Lett. (1)

I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, “BW-media with negative parameter, capable of supporting backward waves,” Microwave Opt. Technol. Lett. 31, 129–133 (2001).
[Crossref]

Nanoletters (1)

B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, “Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique,” Nanoletters 13, 3218–3224 (2013).

Nat. Mater. (2)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. V. Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

Phys. Rev. E (4)

R. W. Ziolkowski and E. Heynman, “Wave propagation in media having negative permeability and permittivity,” Phys. Rev. E 64, 056625 (2001).
[Crossref]

T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003).
[Crossref]

R. A. Depine and A. Lakhtakia, “Comment I on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048601 (2004).
[Crossref]

A. L. Efros, “Comment II on resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 70, 048602 (2004).
[Crossref]

Phys. Rev. Lett. (4)

V. A. Fedetov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 23902 (2005).
[Crossref]

Phys. Rev. X (1)

W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, and W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1, 021016 (2011).
[Crossref]

Phys. Uspekhi (1)

V. G. Veselago, “Formulating Fermat’s principle for light travelling in negative refraction material,” Phys. Uspekhi 45, 1097–1099 (2002).
[Crossref]

Proc. SPIE (1)

K. Kishor and R. K. Sinha, “Design of planar metamaterial optical antenna,” Proc. SPIE 8457, 84572N (2012).

Rep. Prog. Phys. (1)

S. Anantha Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[Crossref]

Science (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Other (3)

N. Engheta and W. Z. Richard, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

S. Zouhdi, S. Ari, and P. V. Alexey, Metamaterials and Plasmonics: Fundamentals, Modeling, Applications (Springer-Verlag, 2008).

K. Kishor and R. K. Sinha, “Design of planar metamaterial optical resonator,” in International Conference on Fiber Optics and Photonics (Optical Society of America, 2012), paper M3B.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometry and dimensions of the reported structure.

Fig. 2.
Fig. 2.

Reflection spectra for SRR structure samples of 20°, 60°, and 120° angular gap; first column shows scanning electron microscope (SEM) images of the samples; second column shows experimentally obtained reflection spectra for both TE and TM polarization; third column shows reflection spectra obtain by FDTD simulation.

Fig. 3.
Fig. 3.

Position of LC peak with respect to angular gap.

Fig. 4.
Fig. 4.

Electromagnetic parameters with respect to wavelength for SRR structure samples of 20°, 60°, and 120° angular gaps; first column shows results for variation in refractive index w.r.t. wavelength for samples; second column shows results for variation in electrical permittivity w.r.t. wavelength; third column shows results for variation in magnetic permeability w.r.t. wavelength; fourth column shows results for variation in impedance w.r.t. wavelength (blue curve is for real part; pink curve is for imaginary part).

Fig. 5.
Fig. 5.

Plot of refractive index against different value of angular gap.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z2=T2(1+R)2T2(1R)2,
n=ciωdln[(1+z)R(1z)T+1T],
T=Te(iωdc),
R=R,
ε=nz,
μ=nz,

Metrics