H. F. Zhang, S. B. Liu, and X. K. Kong, “Dispersion properties of three-dimensional plasma photonic crystals in Diamond lattice arrangement,” J. Lightwave Technol. 31, 1694–1702 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices,” Prog. Electromagn. Res. 141, 267–289 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigation of Faraday effects in photonic band gap for tunable three-dimensional magnetized plasma photonic crystals containing the anisotropic material in diamond arrangement,” J. Electromagn. Wave Appl. 27, 1776–1791 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials,” Laser Phys. 23, 105815 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials,” Appl. Phys. B 112, 553–563 (2013).

[CrossRef]

M. Lou, Q. H. Liu, and Z. Li, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 56702 (2012).

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010).

[CrossRef]

Y. Chen, “Broadband one-dimensional photonic crystals wave plate containing single-negative materials,” Opt. Express 18, 19920–19929 (2010).

[CrossRef]

X. H. Deng, N. H. Liu, J. T. Liu, Q. H. Liao, and T. B. Yu, “Enlargement of polarization-independent omnidirectional band gaps in the photonic heterostrucutures containing single-negative materials,” J. Opt. Soc. Am. B 27, 1174–1178 (2010).

[CrossRef]

P. Kockaert, P. Tassin, I. Veretennicoff, G. V. d. Sande, and M. Tlidi, “Beyond the zero-diffraction regime in optical cavities with a left-handed material,” J. Opt. Soc. Am. B 26, B148–B155 (2009).

[CrossRef]

D. P. Aryal, K. L. Tsakmakidis, and O. Hess, “Complete bandgap switching in photonic crystals,” J. New Phys. 11, 073011 (2009).

[CrossRef]

P. Chiang, C. Yu, and H. Chang, “Analysis of two-dimensional photonic crystals using a mutildomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).

[CrossRef]

A. J. Garcia-Adeva, “Band structure of photonic crystals with the symmetry of a pyrochlore lattice,” Phys. Rev. B 73, 073107 (2006).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

K. Xu, X. Zheng, C. Li, and W. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).

[CrossRef]

L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).

[CrossRef]

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

N. Malkova, S. Kim, T. Dilazaro, and V. Gopalan, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003).

[CrossRef]

S. Jun, Y. S. Cho, and S. Im, “Moving least-square method for the band-structure calculation of 2D photonic crystals,” Opt. Express 11, 541–551 (2003).

[CrossRef]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]

A. Moroz, “Three-dimensional complete photonic-band-gap structure in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).

[CrossRef]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys.: Condens. Matter 11, 997–1008 (1999).

[CrossRef]

V. Kuzmiak and A. A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phy. Rev. B 58, 7230–7251 (1998).

[CrossRef]

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721–3729 (1998).

[CrossRef]

H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 5, 13962 (1992).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission of photons in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]

V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

D. P. Aryal, K. L. Tsakmakidis, and O. Hess, “Complete bandgap switching in photonic crystals,” J. New Phys. 11, 073011 (2009).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001).

[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

P. Chiang, C. Yu, and H. Chang, “Analysis of two-dimensional photonic crystals using a mutildomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013).

[CrossRef]

L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).

[CrossRef]

P. Chiang, C. Yu, and H. Chang, “Analysis of two-dimensional photonic crystals using a mutildomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).

[CrossRef]

X. H. Deng, N. H. Liu, J. T. Liu, Q. H. Liao, and T. B. Yu, “Enlargement of polarization-independent omnidirectional band gaps in the photonic heterostrucutures containing single-negative materials,” J. Opt. Soc. Am. B 27, 1174–1178 (2010).

[CrossRef]

X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010).

[CrossRef]

N. Malkova, S. Kim, T. Dilazaro, and V. Gopalan, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003).

[CrossRef]

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

A. J. Garcia-Adeva, “Band structure of photonic crystals with the symmetry of a pyrochlore lattice,” Phys. Rev. B 73, 073107 (2006).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

N. Malkova, S. Kim, T. Dilazaro, and V. Gopalan, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003).

[CrossRef]

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721–3729 (1998).

[CrossRef]

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 5, 13962 (1992).

[CrossRef]

D. P. Aryal, K. L. Tsakmakidis, and O. Hess, “Complete bandgap switching in photonic crystals,” J. New Phys. 11, 073011 (2009).

[CrossRef]

X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010).

[CrossRef]

H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 5, 13962 (1992).

[CrossRef]

J. J. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

N. Malkova, S. Kim, T. Dilazaro, and V. Gopalan, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Dispersion properties of three-dimensional plasma photonic crystals in Diamond lattice arrangement,” J. Lightwave Technol. 31, 1694–1702 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials,” Laser Phys. 23, 105815 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials,” Appl. Phys. B 112, 553–563 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigation of Faraday effects in photonic band gap for tunable three-dimensional magnetized plasma photonic crystals containing the anisotropic material in diamond arrangement,” J. Electromagn. Wave Appl. 27, 1776–1791 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices,” Prog. Electromagn. Res. 141, 267–289 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

V. Kuzmiak and A. A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phy. Rev. B 58, 7230–7251 (1998).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

K. Xu, X. Zheng, C. Li, and W. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

M. Lou, Q. H. Liu, and Z. Li, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 56702 (2012).

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721–3729 (1998).

[CrossRef]

X. H. Deng, N. H. Liu, J. T. Liu, Q. H. Liao, and T. B. Yu, “Enlargement of polarization-independent omnidirectional band gaps in the photonic heterostrucutures containing single-negative materials,” J. Opt. Soc. Am. B 27, 1174–1178 (2010).

[CrossRef]

X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010).

[CrossRef]

X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010).

[CrossRef]

X. H. Deng, N. H. Liu, J. T. Liu, Q. H. Liao, and T. B. Yu, “Enlargement of polarization-independent omnidirectional band gaps in the photonic heterostrucutures containing single-negative materials,” J. Opt. Soc. Am. B 27, 1174–1178 (2010).

[CrossRef]

M. Lou, Q. H. Liu, and Z. Li, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 56702 (2012).

H. F. Zhang, S. B. Liu, and X. K. Kong, “Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials,” Laser Phys. 23, 105815 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials,” Appl. Phys. B 112, 553–563 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Dispersion properties of three-dimensional plasma photonic crystals in Diamond lattice arrangement,” J. Lightwave Technol. 31, 1694–1702 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigation of Faraday effects in photonic band gap for tunable three-dimensional magnetized plasma photonic crystals containing the anisotropic material in diamond arrangement,” J. Electromagn. Wave Appl. 27, 1776–1791 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices,” Prog. Electromagn. Res. 141, 267–289 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

M. Lou, Q. H. Liu, and Z. Li, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 56702 (2012).

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

N. Malkova, S. Kim, T. Dilazaro, and V. Gopalan, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003).

[CrossRef]

V. Kuzmiak and A. A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phy. Rev. B 58, 7230–7251 (1998).

[CrossRef]

J. J. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

A. Moroz, “Three-dimensional complete photonic-band-gap structure in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).

[CrossRef]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys.: Condens. Matter 11, 997–1008 (1999).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]

K. Xu, X. Zheng, C. Li, and W. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).

[CrossRef]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001).

[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys.: Condens. Matter 11, 997–1008 (1999).

[CrossRef]

H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 5, 13962 (1992).

[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

D. P. Aryal, K. L. Tsakmakidis, and O. Hess, “Complete bandgap switching in photonic crystals,” J. New Phys. 11, 073011 (2009).

[CrossRef]

V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721–3729 (1998).

[CrossRef]

L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).

[CrossRef]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001).

[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

J. J. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

K. Xu, X. Zheng, C. Li, and W. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission of photons in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]

P. Chiang, C. Yu, and H. Chang, “Analysis of two-dimensional photonic crystals using a mutildomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigation of Faraday effects in photonic band gap for tunable three-dimensional magnetized plasma photonic crystals containing the anisotropic material in diamond arrangement,” J. Electromagn. Wave Appl. 27, 1776–1791 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices,” Prog. Electromagn. Res. 141, 267–289 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Dispersion properties of three-dimensional plasma photonic crystals in Diamond lattice arrangement,” J. Lightwave Technol. 31, 1694–1702 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials,” Laser Phys. 23, 105815 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials,” Appl. Phys. B 112, 553–563 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001).

[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

K. Xu, X. Zheng, C. Li, and W. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigating the dispersive properties of the three-dimensional photonic crystals with face-centered-cubic lattices containing epsilon-negative materials,” Appl. Phys. B 112, 553–563 (2013).

[CrossRef]

N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, and D. Mittleman, “Ominidrectional terahertz mirror: a key element for future terahertz communication systems,” Appl. Phys. Lett. 88, 202905 (2006).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, “Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave” [J. Appl. Phys. 101, 073304 (2007)],” J. Appl. Phys. 110, 026104 (2011).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Investigation of Faraday effects in photonic band gap for tunable three-dimensional magnetized plasma photonic crystals containing the anisotropic material in diamond arrangement,” J. Electromagn. Wave Appl. 27, 1776–1791 (2013).

[CrossRef]

D. P. Aryal, K. L. Tsakmakidis, and O. Hess, “Complete bandgap switching in photonic crystals,” J. New Phys. 11, 073011 (2009).

[CrossRef]

P. Kockaert, P. Tassin, I. Veretennicoff, G. V. d. Sande, and M. Tlidi, “Beyond the zero-diffraction regime in optical cavities with a left-handed material,” J. Opt. Soc. Am. B 26, B148–B155 (2009).

[CrossRef]

X. H. Deng, N. H. Liu, J. T. Liu, Q. H. Liao, and T. B. Yu, “Enlargement of polarization-independent omnidirectional band gaps in the photonic heterostrucutures containing single-negative materials,” J. Opt. Soc. Am. B 27, 1174–1178 (2010).

[CrossRef]

X. H. Deng, J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, “Omnidirectional band gap in Fibonacci quasicrystal containing single-negative materials,” J. Phys. Condens. Matter 22, 055403 (2010).

[CrossRef]

A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys.: Condens. Matter 11, 997–1008 (1999).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Study of the dispersive properties of three-dimensional photonic crystals with diamond lattices containing metamaterials,” Laser Phys. 23, 105815 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, C. Chen, and B. R. Bian, “The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice,” Opt. Commun. 288, 82–90 (2013).

[CrossRef]

Y. Chen, “Broadband one-dimensional photonic crystals wave plate containing single-negative materials,” Opt. Express 18, 19920–19929 (2010).

[CrossRef]

S. Jun, Y. S. Cho, and S. Im, “Moving least-square method for the band-structure calculation of 2D photonic crystals,” Opt. Express 11, 541–551 (2003).

[CrossRef]

R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16, 18131–18144 (2008).

[CrossRef]

V. Kuzmiak and A. A. Maradudin, “Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components,” Phy. Rev. B 58, 7230–7251 (1998).

[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, and P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Phys. B 279, 150–154 (2000).

M. Kamp, T. Happ, S. Mahnkopf, G. Duan, S. Anand, and A. Forchel, “Semiconductor photonic crystals for optoelectronics,” Phys. E 21, 802–808 (2004).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, “Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer,” Phys. Plasmas 19, 022103 (2012).

[CrossRef]

Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, “Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency,” Phys. Rev. B 64, 113108 (2001).

[CrossRef]

H. S. Sözüer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 5, 13962 (1992).

[CrossRef]

L. Wang, H. Chen, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004).

[CrossRef]

Z. Y. Li, J. Wang, and B. Y. Gu, “Creation of partial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B 58, 3721–3729 (1998).

[CrossRef]

N. Malkova, S. Kim, T. Dilazaro, and V. Gopalan, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003).

[CrossRef]

A. J. Garcia-Adeva, “Band structure of photonic crystals with the symmetry of a pyrochlore lattice,” Phys. Rev. B 73, 073107 (2006).

[CrossRef]

P. Chiang, C. Yu, and H. Chang, “Analysis of two-dimensional photonic crystals using a mutildomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).

[CrossRef]

M. Lou, Q. H. Liu, and Z. Li, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 56702 (2012).

K. Xu, X. Zheng, C. Li, and W. She, “Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index,” Phys. Rev. E 71, 066604 (2005).

[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng,. “Roubust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).

[CrossRef]

A. Moroz, “Three-dimensional complete photonic-band-gap structure in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).

[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission of photons in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]

H. F. Zhang, S. B. Liu, and X. K. Kong, “Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices,” Prog. Electromagn. Res. 141, 267–289 (2013).

[CrossRef]

H. F. Zhang, S. B. Liu, X. K. Kong, B. R. Bian, and X. Zhao, “Properties of omnidirectional photonic band gaps in Fibonacci quasi-periodic one-dimensional superconductor photonic crystals,” Prog. Electromagn. Res. B 40, 415–431 (2012).

[CrossRef]

V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509–514 (1968).

J. J. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).