Abstract

We use a quantum mechanical approach to derive a set of linear and nonlinear quantum conductivity coefficients for metal–insulator–metal structures with nanometer sized gaps. The immediate proximity of metallic objects generates a tunneling AC current density that endows the gap region with additional linear and nonlinear coefficients that in turn trigger linear and nonlinear absorption, and second- and third-harmonic generation. For example, a vacuum gap approximately 0.8 nm thick displays an effective |χ(2)|0.1pm/V for adjacent objects composed of dissimilar metals and an effective |χ(3)|1020m2/V2 for either similar or dissimilar metals, increasing exponentially for smaller gaps. Field localization inside the gap ensures that harmonic generation arising from the gap region overwhelms intrinsic metal second- and third-order nonlinearities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
    [CrossRef]
  2. J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31, 259–269 (2014).
    [CrossRef]
  3. J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef]
  5. M. Stockman, “Ultrafast nanoplasmonics and coherent control,” New J. Phys. 10, 025031 (2008).
    [CrossRef]
  6. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef]
  8. M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013).
    [CrossRef]
  9. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45, 433001 (2012).
    [CrossRef]
  10. N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [CrossRef]
  11. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
    [CrossRef]
  12. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
    [CrossRef]
  13. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
    [CrossRef]
  14. M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Physiol. 89, 221–223 (2007).
  15. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
    [CrossRef]
  16. M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
    [CrossRef]
  17. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]
  18. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
    [CrossRef]
  19. M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013).
    [CrossRef]
  20. D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
    [CrossRef]
  21. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef]
  22. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
    [CrossRef]
  23. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
    [CrossRef]
  24. M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
    [CrossRef]
  25. Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
    [CrossRef]
  26. M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).
  27. M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
    [CrossRef]
  28. M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012).
    [CrossRef]
  29. F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. B 112, 17983–17987 (2008).
  30. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett. 10, 3473–3481 (2010).
    [CrossRef]
  31. C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
    [CrossRef]
  32. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
    [CrossRef]
  33. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
    [CrossRef]
  34. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
    [CrossRef]
  35. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [CrossRef]
  36. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
    [CrossRef]
  37. C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998).
    [CrossRef]
  38. M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
    [CrossRef]
  39. P. C. Hobbs, R. B. Laibowitz, F. R. Libsch, N. C. LaBianca, and P. P. Chiniwalla, “Efficient waveguide-integrated tunnel junction detectors at 1.6  μm,” Opt. Express 15, 16376–16389 (2007).
    [CrossRef]
  40. M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11, 1611–1621 (1972).
    [CrossRef]
  41. W. Tantraporn, “Electron current through metal-insulator-metal sandwiches,” Solid-State Electron. 7, 81–91 (1964).
    [CrossRef]
  42. L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).
  43. A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978).
    [CrossRef]
  44. B. J. Eliasson, “Metal–insulator–metal diodes for solar energy conversion,” Ph.D. thesis (University of Colorado at Boulder, 2001).
  45. M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
    [CrossRef]
  46. S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
    [CrossRef]
  47. S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010).
    [CrossRef]
  48. S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67, 94–99 (2012).
    [CrossRef]
  49. S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovoltaics 1, 78–83 (2011).
    [CrossRef]
  50. H. Kroemer, Quantum Mechanics, 3rd ed. (Prentice-Hall, 1994).
  51. J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793 (1963).
    [CrossRef]
  52. J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
    [CrossRef]
  53. P. K. Tien and J. P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647 (1963).
    [CrossRef]
  54. J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,” Appl. Phys. Lett. 33, 611 (1978).
    [CrossRef]
  55. J. R. Tucker and M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. QE-57, 1055–1133 (1985).
    [CrossRef]
  56. J. R. Tucker, “Quantum limited detection in tunnel junction mixers,” IEEE J. Quantum Electron. 15, 1234–1258 (1979).
    [CrossRef]
  57. G. Moddel and S. Grover, eds., Rectenna Solar Cells (Springer, 2013).
  58. B. Joshi and G. Moddel, “Efficiency limits of rectenna solar cells: theory of broadband photon-assisted-tunneling,” Appl. Phys. Lett. 102, 083901 (2013).
    [CrossRef]
  59. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
    [CrossRef]
  60. M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
    [CrossRef]
  61. J. D. Jackson, The Classical Electromagnetic Field (Wiley, 1999).
  62. N. D. Lang and W. Kohn, “Theory of metal surfaces: charge density and surface energy,” Phys. Rev. B 1, 4555–4568 (1970).
    [CrossRef]
  63. N. D. Lang and W. Kohn, “Theory of metal surfaces: work function,” Phys. Rev. B 3, 1215–1223 (1971).
    [CrossRef]
  64. V. E. Kenner, R. E. Allen, and W. M. Saslow, “Screening and tunneling at metal surfaces,” Phys. Lett. 38A, 255–256 (1972).
    [CrossRef]
  65. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
    [CrossRef]
  66. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2014 (3)

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31, 259–269 (2014).
[CrossRef]

2013 (8)

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013).
[CrossRef]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[CrossRef]

B. Joshi and G. Moddel, “Efficiency limits of rectenna solar cells: theory of broadband photon-assisted-tunneling,” Appl. Phys. Lett. 102, 083901 (2013).
[CrossRef]

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013).
[CrossRef]

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

2012 (12)

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45, 433001 (2012).
[CrossRef]

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[CrossRef]

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef]

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67, 94–99 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012).
[CrossRef]

2011 (3)

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovoltaics 1, 78–83 (2011).
[CrossRef]

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

2010 (8)

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[CrossRef]

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[CrossRef]

S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
[CrossRef]

S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010).
[CrossRef]

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett. 10, 3473–3481 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

2009 (2)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

2008 (4)

M. Stockman, “Ultrafast nanoplasmonics and coherent control,” New J. Phys. 10, 025031 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. B 112, 17983–17987 (2008).

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

2007 (2)

M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Physiol. 89, 221–223 (2007).

P. C. Hobbs, R. B. Laibowitz, F. R. Libsch, N. C. LaBianca, and P. P. Chiniwalla, “Efficient waveguide-integrated tunnel junction detectors at 1.6  μm,” Opt. Express 15, 16376–16389 (2007).
[CrossRef]

2004 (1)

M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
[CrossRef]

2003 (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

1999 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[CrossRef]

1998 (1)

C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

1993 (1)

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
[CrossRef]

1985 (1)

J. R. Tucker and M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. QE-57, 1055–1133 (1985).
[CrossRef]

1979 (1)

J. R. Tucker, “Quantum limited detection in tunnel junction mixers,” IEEE J. Quantum Electron. 15, 1234–1258 (1979).
[CrossRef]

1978 (2)

A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978).
[CrossRef]

J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,” Appl. Phys. Lett. 33, 611 (1978).
[CrossRef]

1972 (2)

V. E. Kenner, R. E. Allen, and W. M. Saslow, “Screening and tunneling at metal surfaces,” Phys. Lett. 38A, 255–256 (1972).
[CrossRef]

M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11, 1611–1621 (1972).
[CrossRef]

1971 (1)

N. D. Lang and W. Kohn, “Theory of metal surfaces: work function,” Phys. Rev. B 3, 1215–1223 (1971).
[CrossRef]

1970 (1)

N. D. Lang and W. Kohn, “Theory of metal surfaces: charge density and surface energy,” Phys. Rev. B 1, 4555–4568 (1970).
[CrossRef]

1968 (1)

L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).

1964 (1)

W. Tantraporn, “Electron current through metal-insulator-metal sandwiches,” Solid-State Electron. 7, 81–91 (1964).
[CrossRef]

1963 (3)

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793 (1963).
[CrossRef]

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
[CrossRef]

P. K. Tien and J. P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647 (1963).
[CrossRef]

Abdel-Rahman, M. R.

M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
[CrossRef]

Aizpurua, J.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[CrossRef]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef]

Akozbek, N.

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

Aközbek, N.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

Allen, R. E.

V. E. Kenner, R. E. Allen, and W. M. Saslow, “Screening and tunneling at metal surfaces,” Phys. Lett. 38A, 255–256 (1972).
[CrossRef]

Alù, A.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Aubry, A.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Bhansali, S.

S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
[CrossRef]

Bharadwaj, P.

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Bianco, G. V.

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

Blair, S.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Bloemer, M.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

Bloemer, M. J.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

Boreman, G. D.

M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
[CrossRef]

Borisov, A. G.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[CrossRef]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef]

Bozhevolnyi, S. I.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Physiol. 89, 221–223 (2007).

Bruno, G.

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

Campione, S.

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

Capolino, F.

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

Centini, M.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

Chang, W.-S.

N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Chen, Y.

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

Chilkoti, A.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Chiniwalla, P. P.

Choi, K.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[CrossRef]

Chryssis, A. N.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[CrossRef]

Ciraci, C.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

D’Aguanno, G.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

D’Orazio, A.

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

Dagenais, M.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[CrossRef]

Daneu, V.

L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Davis, C. F.

A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978).
[CrossRef]

de Ceglia, D.

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31, 259–269 (2014).
[CrossRef]

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013).
[CrossRef]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013).
[CrossRef]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

De Vittorio, M.

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

Deng, C.

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

Deutsch, B.

Dmitriyeva, O.

S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010).
[CrossRef]

Eliasson, B. J.

B. J. Eliasson, “Metal–insulator–metal diodes for solar energy conversion,” Ph.D. thesis (University of Colorado at Boulder, 2001).

Esteban, R.

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef]

Estes, M. J.

S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Feldman, M. J.

J. R. Tucker and M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. QE-57, 1055–1133 (1985).
[CrossRef]

Fernandez-Dominguez, A. I.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Fu, Q.

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Fumeaux, C.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998).
[CrossRef]

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. B 112, 17983–17987 (2008).

Gonzalez, F. J.

M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
[CrossRef]

Gordon, J. P.

P. K. Tien and J. P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647 (1963).
[CrossRef]

Goswami, D. Y.

S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
[CrossRef]

Grande, M.

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012).
[CrossRef]

Gray, S. K.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett. 10, 3473–3481 (2010).
[CrossRef]

Grover, S.

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67, 94–99 (2012).
[CrossRef]

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovoltaics 1, 78–83 (2011).
[CrossRef]

S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010).
[CrossRef]

Halas, N. J.

N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Han, Z.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

Haus, J.

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

Haus, J. W.

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31, 259–269 (2014).
[CrossRef]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013).
[CrossRef]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012).
[CrossRef]

Hayashi, S.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45, 433001 (2012).
[CrossRef]

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Herrmann, W.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998).
[CrossRef]

Hill, R. T.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Hobbs, P. C.

Hocker, L. O.

L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Jackson, J. D.

J. D. Jackson, The Classical Electromagnetic Field (Wiley, 1999).

Javan, A.

A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978).
[CrossRef]

L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).

Jiao, X.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Joshi, B.

B. Joshi and G. Moddel, “Efficiency limits of rectenna solar cells: theory of broadband photon-assisted-tunneling,” Appl. Phys. Lett. 102, 083901 (2013).
[CrossRef]

Katte, N.

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

Kazansky, A. K.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef]

Kenner, V. E.

V. E. Kenner, R. E. Allen, and W. M. Saslow, “Screening and tunneling at metal surfaces,” Phys. Lett. 38A, 255–256 (1972).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Kneubühl, F. K.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998).
[CrossRef]

Kohn, W.

N. D. Lang and W. Kohn, “Theory of metal surfaces: work function,” Phys. Rev. B 3, 1215–1223 (1971).
[CrossRef]

N. D. Lang and W. Kohn, “Theory of metal surfaces: charge density and surface energy,” Phys. Rev. B 1, 4555–4568 (1970).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Krishnan, S.

S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
[CrossRef]

Kroemer, H.

H. Kroemer, Quantum Mechanics, 3rd ed. (Prentice-Hall, 1994).

LaBianca, N. C.

Laibowitz, R. B.

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Lang, N. D.

N. D. Lang and W. Kohn, “Theory of metal surfaces: work function,” Phys. Rev. B 3, 1215–1223 (1971).
[CrossRef]

N. D. Lang and W. Kohn, “Theory of metal surfaces: charge density and surface energy,” Phys. Rev. B 1, 4555–4568 (1970).
[CrossRef]

Lei, D. Y.

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Li, L.

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

Libsch, F. R.

Liebsch, A.

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[CrossRef]

Link, S.

N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Liu, K. C.

A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978).
[CrossRef]

Lu, Y.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Maier, S. A.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

Marinica, D. C.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef]

Mattiucci, N.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

McMahon, J. M.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett. 10, 3473–3481 (2010).
[CrossRef]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[CrossRef]

Middleton, C. F.

M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
[CrossRef]

Millea, M. F.

J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,” Appl. Phys. Lett. 33, 611 (1978).
[CrossRef]

Ming, H.

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Mock, J. J.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Moddel, G.

B. Joshi and G. Moddel, “Efficiency limits of rectenna solar cells: theory of broadband photon-assisted-tunneling,” Appl. Phys. Lett. 102, 083901 (2013).
[CrossRef]

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67, 94–99 (2012).
[CrossRef]

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovoltaics 1, 78–83 (2011).
[CrossRef]

S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010).
[CrossRef]

Nagae, M.

M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11, 1611–1621 (1972).
[CrossRef]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[CrossRef]

Nordlander, P.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013).
[CrossRef]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef]

N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[CrossRef]

Novotny, L.

Oh, S.-H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[CrossRef]

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45, 433001 (2012).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

Peckerar, M. C.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[CrossRef]

Pendry, J. B.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Petruzzelli, V.

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Roppo, V.

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

Rothuizen, H.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998).
[CrossRef]

Sanchez, A.

A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978).
[CrossRef]

Saslow, W. M.

V. E. Kenner, R. E. Allen, and W. M. Saslow, “Screening and tunneling at metal surfaces,” Phys. Lett. 38A, 255–256 (1972).
[CrossRef]

Scalora, M.

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31, 259–269 (2014).
[CrossRef]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013).
[CrossRef]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013).
[CrossRef]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012).
[CrossRef]

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

Schatz, G. C.

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett. 10, 3473–3481 (2010).
[CrossRef]

Schuller, J. A.

M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Physiol. 89, 221–223 (2007).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Simmons, J. G.

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793 (1963).
[CrossRef]

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
[CrossRef]

Smith, D. R.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Sokoloff, D. R.

L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).

Stefanakos, E.

S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
[CrossRef]

Stockman, M.

M. Stockman, “Ultrafast nanoplasmonics and coherent control,” New J. Phys. 10, 025031 (2008).
[CrossRef]

Stomeo, T.

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

Surbhi, L.

N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

Tantraporn, W.

W. Tantraporn, “Electron current through metal-insulator-metal sandwiches,” Solid-State Electron. 7, 81–91 (1964).
[CrossRef]

Teperik, T. V.

Tien, P. K.

P. K. Tien and J. P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647 (1963).
[CrossRef]

Trimm, R.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

Tucker, J. R.

J. R. Tucker and M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. QE-57, 1055–1133 (1985).
[CrossRef]

J. R. Tucker, “Quantum limited detection in tunnel junction mixers,” IEEE J. Quantum Electron. 15, 1234–1258 (1979).
[CrossRef]

J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,” Appl. Phys. Lett. 33, 611 (1978).
[CrossRef]

Urzhumov, Y.

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Vincenti, M.

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

Vincenti, M. A.

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “Quantum conductivity for metal-insulator-metal nanostructures,” J. Opt. Soc. Am. B 31, 259–269 (2014).
[CrossRef]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Raman scattering near metal nanostructures,” J. Opt. Soc. Am. B 29, 2035–2045 (2012).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

Wang, P.

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Wang, X.

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Wen, X.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Yesilkoy, F.

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[CrossRef]

Yi, M.

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Zhang, D.

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

Zhu, L.

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

Zia, R.

M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Physiol. 89, 221–223 (2007).

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

Zummo, G.

M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
[CrossRef]

ACS Nano (1)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

AIP Conf. Proc. (1)

S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
[CrossRef]

Appl. Phys. (1)

L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401 (1968).

Appl. Phys. Lett. (5)

M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012).
[CrossRef]

Q. Fu, D. Zhang, Y. Chen, X. Wang, L. Zhu, P. Wang, and H. Ming, “Surface enhanced Raman scattering arising from plasmonic interaction between silver nanocubes and silver grating,” Appl. Phys. Lett. 103, 041122 (2013).
[CrossRef]

M. A. Vincenti, M. Grande, D. de Ceglia, T. Stomeo, V. Petruzzelli, M. De Vittorio, M. Scalora, and A. D’Orazio, “Color control through plasmonic metal gratings,” Appl. Phys. Lett. 100, 201107 (2012).

J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,” Appl. Phys. Lett. 33, 611 (1978).
[CrossRef]

B. Joshi and G. Moddel, “Efficiency limits of rectenna solar cells: theory of broadband photon-assisted-tunneling,” Appl. Phys. Lett. 102, 083901 (2013).
[CrossRef]

Chem. Rev. (2)

N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[CrossRef]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957–2976 (1999).
[CrossRef]

IEEE J. Photovoltaics (1)

S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovoltaics 1, 78–83 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Tucker, “Quantum limited detection in tunnel junction mixers,” IEEE J. Quantum Electron. 15, 1234–1258 (1979).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010).
[CrossRef]

Infrared Phys. Technol (1)

C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30  THz radiation,” Infrared Phys. Technol 39, 123–183 (1998).
[CrossRef]

J. Appl. Phys. (4)

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793 (1963).
[CrossRef]

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
[CrossRef]

A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270 (1978).
[CrossRef]

M. A. Vincenti, M. Grande, G. V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora, “Surface enhanced Raman scattering from finite arrays of gold nano-patches,” J. Appl. Phys. 113, 013103 (2013).
[CrossRef]

J. Appl. Physiol. (1)

M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Physiol. 89, 221–223 (2007).

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

F. J. Garcia de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. B 112, 17983–17987 (2008).

J. Phys. D (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45, 433001 (2012).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11, 1611–1621 (1972).
[CrossRef]

Nano Lett. (3)

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[CrossRef]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009).
[CrossRef]

J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett. 10, 3473–3481 (2010).
[CrossRef]

Nat. Commun. (1)

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[CrossRef]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Nature (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef]

New J. Phys. (1)

M. Stockman, “Ultrafast nanoplasmonics and coherent control,” New J. Phys. 10, 025031 (2008).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Opt. Express (2)

Phys. Lett. (1)

V. E. Kenner, R. E. Allen, and W. M. Saslow, “Screening and tunneling at metal surfaces,” Phys. Lett. 38A, 255–256 (1972).
[CrossRef]

Phys. Rev. (1)

P. K. Tien and J. P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647 (1963).
[CrossRef]

Phys. Rev. A (3)

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010).
[CrossRef]

M. Scalora, M. Vincenti, D. de Ceglia, N. Akozbek, V. Roppo, M. Bloemer, and J. Haus, “Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths,” Phys. Rev. A 85, 053809 (2012).
[CrossRef]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multi-resonant plasma films,” Phys. Rev. A 88, 043812 (2013).
[CrossRef]

Phys. Rev. B (5)

D. de Ceglia, M. A. Vincenti, S. Campione, F. Capolino, J. W. Haus, and M. Scalora, “Second harmonic double resonance cones in dispersive hyperbolic metamaterials,” Phys. Rev. B 89, 075123 (2014).
[CrossRef]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012).
[CrossRef]

N. D. Lang and W. Kohn, “Theory of metal surfaces: charge density and surface energy,” Phys. Rev. B 1, 4555–4568 (1970).
[CrossRef]

N. D. Lang and W. Kohn, “Theory of metal surfaces: work function,” Phys. Rev. B 3, 1215–1223 (1971).
[CrossRef]

A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B 48, 11317–11328 (1993).
[CrossRef]

Phys. Rev. Lett. (2)

A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667 (1997).
[CrossRef]

Plasmonics (1)

M. Yi, D. Zhang, P. Wang, X. Jiao, S. Blair, X. Wen, Q. Fu, Y. Lu, and H. Ming, “Plasmonic interaction between silver nano-cubes and silver ground plane studied by surface-enhanced Raman scattering,” Plasmonics 6, 515–519 (2011).
[CrossRef]

Proc. SPIE (4)

J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013).
[CrossRef]

M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010).
[CrossRef]

J. W. Haus, D. de Ceglia, M. A. Vincenti, and M. Scalora, “A quantum tunneling theory for nanophotonics,” Proc. SPIE 8994, 89941Q (2014).

M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 233 (2004).
[CrossRef]

Rep. Prog. Phys. (3)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012).
[CrossRef]

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef]

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

Rev. Mod. Phys. (1)

J. R. Tucker and M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. QE-57, 1055–1133 (1985).
[CrossRef]

Science (1)

C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef]

Solid-State Electron. (2)

W. Tantraporn, “Electron current through metal-insulator-metal sandwiches,” Solid-State Electron. 7, 81–91 (1964).
[CrossRef]

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67, 94–99 (2012).
[CrossRef]

Other (5)

H. Kroemer, Quantum Mechanics, 3rd ed. (Prentice-Hall, 1994).

G. Moddel and S. Grover, eds., Rectenna Solar Cells (Springer, 2013).

J. D. Jackson, The Classical Electromagnetic Field (Wiley, 1999).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

B. J. Eliasson, “Metal–insulator–metal diodes for solar energy conversion,” Ph.D. thesis (University of Colorado at Boulder, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Wavelength dependence of the linear and nonlinear conductivities appearing in Eqs. (1)–(4) (a) σω(1) and (b) σω(3)=ωε0Im(χ(3)(ω,ω,ω,ω)) represent linear and TPA, respectively, assuming gold as metal and vacuum in the gap region. (c) σ2ω=2ωε0Im(χ(2)(2ω,ω,ω)) for the gold/vacuum/silver system, and (d) σ3ω=3ωε0Im(χ(3)(3ω,ω,ω,ω)) assuming gold as metal and vacuum in the gap region.

Fig. 2.
Fig. 2.

Field enhancement at the center of the gap for Au dimers immersed in vacuum using QCT. We consider two parallel Au cylinders assumed to be infinitely long, with variable separation d and radius r=10nm. (a) Field enhancement using classical plasmonic theory. (b) Field enhancement using QCT in the low irradiance regime (1mW/cm2). (c) Field enhancement including the nonlinear quantum conductivity in QCT. The irradiance is (c) 1GW/cm2 [2] and (d) 5GW/cm2. The field is TM-polarized, as indicated in the inset in (a).

Fig. 3.
Fig. 3.

Infinite (a) Au and (b) Au–Ag arrays of nanowires illuminated by TM-polarized light.

Fig. 4.
Fig. 4.

(a) Reflection, transmission, and absorption versus wavelength for a gold nanowire array illuminated by plane waves polarized along the array axis [see Fig. 3(a)]. Results for the local/nonlocal case are reported with solid/dashed curves. Radius of nanowire is 10 nm and vacuum gap is 0.8 nm. The incident field is TM polarized. (b) Electric field enhancement at the center of the gap for local (solid) and nonlocal (dashed) cases.

Fig. 5.
Fig. 5.

Pump electric field intensity distribution near and between two adjacent metal nanowires for an infinite array of Au grating.

Fig. 6.
Fig. 6.

Total (a) SHG and (b) THG from the gold–silver grating, with and without quantum tunneling.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J0=Jdc(V¯d)+σ0(2)|Eω|2,
Jω=σω(1)Eω+σω(3)|Eω|2Eω,
J2ω=σ2ωEω2,
J3ω=σ3ωEω3.

Metrics