F. Ye, C. Huang, Y. V. Kartashov, and B. A. Malomed, “Solitons supported by localized parametric gain,” Opt. Lett. 38, 480–482 (2013).

[CrossRef]

C. Huang, F. Ye, B. A. Malomed, Y. V. Kartashov, and X. Chen, “Solitary vortices supported by localized parametric gain,” Opt. Lett. 38, 2177–2180 (2013).

[CrossRef]

Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013).

[CrossRef]

J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013).

[CrossRef]

C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi, “Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics,” Phys. Rev. Lett. 110, 174101 (2013).

[CrossRef]

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523, 61–126 (2013).

[CrossRef]

D. Mihalache, “Linear and nonlinear light bullets: recent theoretical and experimental studies,” Rom. J. Phys. 57, 352–371 (2012).

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

Y. He and D. Mihalache, “Soliton drift or swing induced by spatially inhomogeneous losses in media described by the complex Ginzburg–Landau,” J. Opt. Soc. Am. B 29, 2554–2558 (2012).

[CrossRef]

B. A. Malomed, E. Ding, K. W. Chow, and S. K. Lai, “Pinned modes in lossy lattices with local gain and nonlinearity,” Phys. Rev. E 86, 036608 (2012).

[CrossRef]

D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36, 1200–1202 (2011).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011).

[CrossRef]

O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785 (2011).

[CrossRef]

C. H. Tsang, B. A. Malomed, and K. W. Chow, “Multistable dissipative structures pinned to dual hot spots,” Phys. Rev. E 84, 066609 (2011).

[CrossRef]

Y. V. Bludov and V. V. Konotop, “Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices,” Phys. Rev. A 81, 013625 (2010).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010).

[CrossRef]

C. H. Tsang, B. A. Malomed, C.-K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59, 81–89 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

W.-L. Zhu, L. Luo, J.-H. Yan, and Y.-J. He, “Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg–Landau equation,” J. Mod. Opt. 56, 1824–1828 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

W. Chang, N. Akhmediev, S. Wabnitz, and M. Taki, “Influence of external phase and gain-loss modulation on bound solitons in laser systems,” J. Opt. Soc. Am. B 26, 2204–2210 (2009).

[CrossRef]

C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Special Topics 173, 233–243 (2009).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007).

[CrossRef]

V. Skarka and N. B. Aleksić, “Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations,” Phys. Rev. Lett. 96, 013903 (2006).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).

[CrossRef]

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B 6, R60–R75 (2004).

[CrossRef]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

B. A. Malomed, “Potential of interaction between two- and three-dimensional solitons,” Phys. Rev. E 58, 7928–7933 (1998).

[CrossRef]

V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

W. Chang, N. Akhmediev, S. Wabnitz, and M. Taki, “Influence of external phase and gain-loss modulation on bound solitons in laser systems,” J. Opt. Soc. Am. B 26, 2204–2210 (2009).

[CrossRef]

V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, 1997).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010).

[CrossRef]

V. Skarka and N. B. Aleksić, “Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations,” Phys. Rev. Lett. 96, 013903 (2006).

[CrossRef]

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008).

N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, 1997).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

Y. V. Bludov and V. V. Konotop, “Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices,” Phys. Rev. A 81, 013625 (2010).

[CrossRef]

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

B. A. Malomed, E. Ding, K. W. Chow, and S. K. Lai, “Pinned modes in lossy lattices with local gain and nonlinearity,” Phys. Rev. E 86, 036608 (2012).

[CrossRef]

C. H. Tsang, B. A. Malomed, and K. W. Chow, “Multistable dissipative structures pinned to dual hot spots,” Phys. Rev. E 84, 066609 (2011).

[CrossRef]

C. H. Tsang, B. A. Malomed, C.-K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59, 81–89 (2010).

[CrossRef]

C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Special Topics 173, 233–243 (2009).

[CrossRef]

C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi, “Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics,” Phys. Rev. Lett. 110, 174101 (2013).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

B. A. Malomed, E. Ding, K. W. Chow, and S. K. Lai, “Pinned modes in lossy lattices with local gain and nonlinearity,” Phys. Rev. E 86, 036608 (2012).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi, “Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics,” Phys. Rev. Lett. 110, 174101 (2013).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

S. C. Fernández and V. S. Shchesnovich, “Nondecaying linear and nonlinear modes in a periodic array of spatially localized dissipations,” arXiv:1401.1687v1 (2014).

C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi, “Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics,” Phys. Rev. Lett. 110, 174101 (2013).

[CrossRef]

J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013).

[CrossRef]

H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006).

[CrossRef]

Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013).

[CrossRef]

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

Y. He and D. Mihalache, “Soliton drift or swing induced by spatially inhomogeneous losses in media described by the complex Ginzburg–Landau,” J. Opt. Soc. Am. B 29, 2554–2558 (2012).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

W.-L. Zhu, L. Luo, J.-H. Yan, and Y.-J. He, “Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg–Landau equation,” J. Mod. Opt. 56, 1824–1828 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

F. Ye, C. Huang, Y. V. Kartashov, and B. A. Malomed, “Solitons supported by localized parametric gain,” Opt. Lett. 38, 480–482 (2013).

[CrossRef]

C. Huang, F. Ye, B. A. Malomed, Y. V. Kartashov, and X. Chen, “Solitary vortices supported by localized parametric gain,” Opt. Lett. 38, 2177–2180 (2013).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013).

[CrossRef]

C. Huang, F. Ye, B. A. Malomed, Y. V. Kartashov, and X. Chen, “Solitary vortices supported by localized parametric gain,” Opt. Lett. 38, 2177–2180 (2013).

[CrossRef]

F. Ye, C. Huang, Y. V. Kartashov, and B. A. Malomed, “Solitons supported by localized parametric gain,” Opt. Lett. 38, 480–482 (2013).

[CrossRef]

O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785 (2011).

[CrossRef]

D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36, 1200–1202 (2011).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011).

[CrossRef]

D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36, 1200–1202 (2011).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010).

[CrossRef]

Y. V. Bludov and V. V. Konotop, “Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices,” Phys. Rev. A 81, 013625 (2010).

[CrossRef]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

B. A. Malomed, E. Ding, K. W. Chow, and S. K. Lai, “Pinned modes in lossy lattices with local gain and nonlinearity,” Phys. Rev. E 86, 036608 (2012).

[CrossRef]

C. H. Tsang, B. A. Malomed, C.-K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59, 81–89 (2010).

[CrossRef]

C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Special Topics 173, 233–243 (2009).

[CrossRef]

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523, 61–126 (2013).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

W.-L. Zhu, L. Luo, J.-H. Yan, and Y.-J. He, “Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg–Landau equation,” J. Mod. Opt. 56, 1824–1828 (2009).

[CrossRef]

F. Ye, C. Huang, Y. V. Kartashov, and B. A. Malomed, “Solitons supported by localized parametric gain,” Opt. Lett. 38, 480–482 (2013).

[CrossRef]

C. Huang, F. Ye, B. A. Malomed, Y. V. Kartashov, and X. Chen, “Solitary vortices supported by localized parametric gain,” Opt. Lett. 38, 2177–2180 (2013).

[CrossRef]

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

B. A. Malomed, E. Ding, K. W. Chow, and S. K. Lai, “Pinned modes in lossy lattices with local gain and nonlinearity,” Phys. Rev. E 86, 036608 (2012).

[CrossRef]

C. H. Tsang, B. A. Malomed, and K. W. Chow, “Multistable dissipative structures pinned to dual hot spots,” Phys. Rev. E 84, 066609 (2011).

[CrossRef]

C. H. Tsang, B. A. Malomed, C.-K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59, 81–89 (2010).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Special Topics 173, 233–243 (2009).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

B. A. Malomed, “Potential of interaction between two- and three-dimensional solitons,” Phys. Rev. E 58, 7928–7933 (1998).

[CrossRef]

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed. (Routledge, 2005), pp. 157–160.

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B 6, R60–R75 (2004).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013).

[CrossRef]

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523, 61–126 (2013).

[CrossRef]

D. Mihalache, “Linear and nonlinear light bullets: recent theoretical and experimental studies,” Rom. J. Phys. 57, 352–371 (2012).

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

Y. He and D. Mihalache, “Soliton drift or swing induced by spatially inhomogeneous losses in media described by the complex Ginzburg–Landau,” J. Opt. Soc. Am. B 29, 2554–2558 (2012).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013).

[CrossRef]

J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013).

[CrossRef]

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, 2002).

H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006).

[CrossRef]

H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

S. C. Fernández and V. S. Shchesnovich, “Nondecaying linear and nonlinear modes in a periodic array of spatially localized dissipations,” arXiv:1401.1687v1 (2014).

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010).

[CrossRef]

V. Skarka and N. B. Aleksić, “Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations,” Phys. Rev. Lett. 96, 013903 (2006).

[CrossRef]

V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi, “Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics,” Phys. Rev. Lett. 110, 174101 (2013).

[CrossRef]

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B 6, R60–R75 (2004).

[CrossRef]

O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785 (2011).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).

[CrossRef]

C. H. Tsang, B. A. Malomed, and K. W. Chow, “Multistable dissipative structures pinned to dual hot spots,” Phys. Rev. E 84, 066609 (2011).

[CrossRef]

C. H. Tsang, B. A. Malomed, C.-K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59, 81–89 (2010).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011).

[CrossRef]

O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785 (2011).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010).

[CrossRef]

C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Special Topics 173, 233–243 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

W.-L. Zhu, L. Luo, J.-H. Yan, and Y.-J. He, “Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg–Landau equation,” J. Mod. Opt. 56, 1824–1828 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

F. Ye, C. Huang, Y. V. Kartashov, and B. A. Malomed, “Solitons supported by localized parametric gain,” Opt. Lett. 38, 480–482 (2013).

[CrossRef]

C. Huang, F. Ye, B. A. Malomed, Y. V. Kartashov, and X. Chen, “Solitary vortices supported by localized parametric gain,” Opt. Lett. 38, 2177–2180 (2013).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

W.-L. Zhu, L. Luo, J.-H. Yan, and Y.-J. He, “Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg–Landau equation,” J. Mod. Opt. 56, 1824–1828 (2009).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007).

[CrossRef]

C. H. Tsang, B. A. Malomed, C.-K. Lam, and K. W. Chow, “Solitons pinned to hot spots,” Eur. Phys. J. D 59, 81–89 (2010).

[CrossRef]

C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. Phys. J. Special Topics 173, 233–243 (2009).

[CrossRef]

W.-L. Zhu, L. Luo, J.-H. Yan, and Y.-J. He, “Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg–Landau equation,” J. Mod. Opt. 56, 1824–1828 (2009).

[CrossRef]

J. Jimenez, Y. Noblet, P. V. Paulau, D. Gomila, and T. Ackemann, “Observation of laser vortex solitons in a self-focusing semiconductor laser,” J. Opt. 15, 044011 (2013).

[CrossRef]

H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006).

[CrossRef]

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B 6, R60–R75 (2004).

[CrossRef]

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]

O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785 (2011).

[CrossRef]

C. Huang, F. Ye, B. A. Malomed, Y. V. Kartashov, and X. Chen, “Solitary vortices supported by localized parametric gain,” Opt. Lett. 38, 2177–2180 (2013).

[CrossRef]

D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36, 1200–1202 (2011).

[CrossRef]

F. Ye, C. Huang, Y. V. Kartashov, and B. A. Malomed, “Solitons supported by localized parametric gain,” Opt. Lett. 38, 480–482 (2013).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010).

[CrossRef]

H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523, 61–126 (2013).

[CrossRef]

Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011).

[CrossRef]

Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013).

[CrossRef]

Y. V. Bludov and V. V. Konotop, “Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices,” Phys. Rev. A 81, 013625 (2010).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

V. V. Afanasjev, N. Akhmediev, and J. M. Soto-Crespo, “Three forms of localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1931–1939 (1996).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

C. H. Tsang, B. A. Malomed, and K. W. Chow, “Multistable dissipative structures pinned to dual hot spots,” Phys. Rev. E 84, 066609 (2011).

[CrossRef]

B. A. Malomed, E. Ding, K. W. Chow, and S. K. Lai, “Pinned modes in lossy lattices with local gain and nonlinearity,” Phys. Rev. E 86, 036608 (2012).

[CrossRef]

B. A. Malomed, “Potential of interaction between two- and three-dimensional solitons,” Phys. Rev. E 58, 7928–7933 (1998).

[CrossRef]

Y. He, D. Mihalache, B. A. Malomed, Y. Qiu, Z. Chen, and Y. Li, “Generations of polygonal soliton clusters and fundamental solitons by radially-azimuthally phase-modulated necklace-ring beams in dissipative systems,” Phys. Rev. E 85, 066206 (2012).

[CrossRef]

C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi, “Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics,” Phys. Rev. Lett. 110, 174101 (2013).

[CrossRef]

V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010).

[CrossRef]

V. Skarka and N. B. Aleksić, “Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations,” Phys. Rev. Lett. 96, 013903 (2006).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]

Y. J. He, B. A. Malomed, F. Ye, J. Dong, Z. Qiu, H. Z. Wang, and B. Hu, “Splitting broad beams into arrays of dissipative spatial solitons by material and virtual gratings,” Phys. Scripta 82, 065404 (2010).

[CrossRef]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

D. Mihalache, “Linear and nonlinear light bullets: recent theoretical and experimental studies,” Rom. J. Phys. 57, 352–371 (2012).

N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, 2002).

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed. (Routledge, 2005), pp. 157–160.

N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, 1997).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Vol. 751 of Lecture Notes in Physics (Springer, 2008).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).

S. C. Fernández and V. S. Shchesnovich, “Nondecaying linear and nonlinear modes in a periodic array of spatially localized dissipations,” arXiv:1401.1687v1 (2014).