Abstract

New scheme of a real-time all-optical switching (AOS) was demonstrated as the fluorescence signal of cesium two-photon transition (TPT) with the control field. This work explored the optical phenomenon of the TPT with the control field that shares a common excited state, in which the TPT fluorescence is quenched under the control field intensity. The strong stimulated emission due to the control laser suppresses the TPT fluorescence, working as an optical switch. A “NOT gate” is generated for realization of AOS. The power spectrum of the intensity range, which can be used for the AOS, is determined.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
    [CrossRef]
  2. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
    [CrossRef]
  3. W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
    [CrossRef]
  4. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  5. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
    [CrossRef]
  6. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
    [CrossRef]
  7. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
    [CrossRef]
  8. H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
    [CrossRef]
  9. Y. C. Lee, Y. Y. Chen, C. J. Wang, H. C. Chui, L. B. Wang, and C. C. Tsai, “Inhibition and enhancement of cesium two-photon transition under control field,” Opt. Express 20, 14419–14427 (2012).
    [CrossRef]
  10. Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
    [CrossRef]
  11. Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
    [CrossRef]
  12. R. Y. Chang, Y. C. Lee, W. C. Fang, M. T. Lee, Z. S. He, B. C. Ke, and C. C. Tsai, “A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption,” J. Opt. Soc. Am. B 27, 85–91 (2010).
    [CrossRef]
  13. J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
    [CrossRef]
  14. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49, 675–685 (2002).
    [CrossRef]
  15. J. Javanainen and P. L. Gould, “Linear intensity dependence of a 2-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
    [CrossRef]
  16. J. Gea-Banacloche, “Two-photon absorption of nonclassical light,” Phys. Rev. Lett. 62, 1603–1606 (1989).
    [CrossRef]
  17. N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
    [CrossRef]
  18. S. Hooker and C. E. Webb, Laser Physics, Oxford Master Series in Physics Atomic, Optical, and Laser Physics (Oxford University, 2010).

2013 (1)

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

2012 (1)

2011 (1)

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

2010 (3)

R. Y. Chang, Y. C. Lee, W. C. Fang, M. T. Lee, Z. S. He, B. C. Ke, and C. C. Tsai, “A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption,” J. Opt. Soc. Am. B 27, 85–91 (2010).
[CrossRef]

Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
[CrossRef]

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
[CrossRef]

2009 (2)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

2005 (3)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005).
[CrossRef]

2002 (1)

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49, 675–685 (2002).
[CrossRef]

2000 (1)

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

1998 (1)

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

1995 (1)

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[CrossRef]

1990 (1)

J. Javanainen and P. L. Gould, “Linear intensity dependence of a 2-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[CrossRef]

1989 (1)

J. Gea-Banacloche, “Two-photon absorption of nonclassical light,” Phys. Rev. Lett. 62, 1603–1606 (1989).
[CrossRef]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

Beck, K. M.

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

Brown, A. W.

Bucker, R.

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

Chang, R. Y.

Chang, Y. H.

Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
[CrossRef]

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
[CrossRef]

Chen, H. C.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

Chen, J. X.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

Chen, K. X.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Chen, W.

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

Chen, Y. C.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

Chen, Y. F.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

Chen, Y. Y.

Y. C. Lee, Y. Y. Chen, C. J. Wang, H. C. Chui, L. B. Wang, and C. C. Tsai, “Inhibition and enhancement of cesium two-photon transition under control field,” Opt. Express 20, 14419–14427 (2012).
[CrossRef]

Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
[CrossRef]

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
[CrossRef]

Chui, H. C.

Y. C. Lee, Y. Y. Chen, C. J. Wang, H. C. Chui, L. B. Wang, and C. C. Tsai, “Inhibition and enhancement of cesium two-photon transition under control field,” Opt. Express 20, 14419–14427 (2012).
[CrossRef]

Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
[CrossRef]

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
[CrossRef]

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Edamatsu, K.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[CrossRef]

Fang, W. C.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Gao, J. Y.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, “Two-photon absorption of nonclassical light,” Phys. Rev. Lett. 62, 1603–1606 (1989).
[CrossRef]

Georgiades, N. P.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[CrossRef]

Gould, P. L.

J. Javanainen and P. L. Gould, “Linear intensity dependence of a 2-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[CrossRef]

Gullans, M.

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

Guo, X. Z.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

Harris, S. E.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

He, Z. S.

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

Hooker, S.

S. Hooker and C. E. Webb, Laser Physics, Oxford Master Series in Physics Atomic, Optical, and Laser Physics (Oxford University, 2010).

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Javanainen, J.

J. Javanainen and P. L. Gould, “Linear intensity dependence of a 2-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[CrossRef]

Jiang, Y.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Ke, B. C.

Kimble, H. J.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[CrossRef]

Lee, M. T.

Lee, Y. C.

Y. C. Lee, Y. Y. Chen, C. J. Wang, H. C. Chui, L. B. Wang, and C. C. Tsai, “Inhibition and enhancement of cesium two-photon transition under control field,” Opt. Express 20, 14419–14427 (2012).
[CrossRef]

R. Y. Chang, Y. C. Lee, W. C. Fang, M. T. Lee, Z. S. He, B. C. Ke, and C. C. Tsai, “A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption,” J. Opt. Soc. Am. B 27, 85–91 (2010).
[CrossRef]

Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
[CrossRef]

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
[CrossRef]

Lo, H. Y.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

Lukin, M. D.

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Parkins, A. S.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[CrossRef]

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

Polzik, E. S.

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[CrossRef]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49, 675–685 (2002).
[CrossRef]

Su, P. C.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

Tanji-Suzuki, H.

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

Tsai, C. C.

Y. C. Lee, Y. Y. Chen, C. J. Wang, H. C. Chui, L. B. Wang, and C. C. Tsai, “Inhibition and enhancement of cesium two-photon transition under control field,” Opt. Express 20, 14419–14427 (2012).
[CrossRef]

R. Y. Chang, Y. C. Lee, W. C. Fang, M. T. Lee, Z. S. He, B. C. Ke, and C. C. Tsai, “A narrow window of Rabi frequency for competition between electromagnetically induced transparency and Raman absorption,” J. Opt. Soc. Am. B 27, 85–91 (2010).
[CrossRef]

Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
[CrossRef]

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
[CrossRef]

Vuletic, V.

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Wang, C. J.

Wang, D.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Wang, L. B.

Webb, C. E.

S. Hooker and C. E. Webb, Laser Physics, Oxford Master Series in Physics Atomic, Optical, and Laser Physics (Oxford University, 2010).

Xiao, M.

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Yan, M.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49, 675–685 (2002).
[CrossRef]

Yang, S. H.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Yu, I. A.

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

Zhao, B.

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

Zhu, Y. F.

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49, 675–685 (2002).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

J. Mod. Opt. (1)

M. Yan, E. G. Rickey, and Y. F. Zhu, “Observations of absorptive photon switching and suppression of two-photon absorption in cold atoms,” J. Mod. Opt. 49, 675–685 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

Y. C. Lee, Y. H. Chang, Y. Y. Chen, C. C. Tsai, and H. C. Chui, “Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy,” J. Phys. B 43, 235003 (2010).
[CrossRef]

Opt. Commun. (1)

Y. C. Lee, H. C. Chui, Y. Y. Chen, Y. H. Chang, and C. C. Tsai, “Effects of light on cesium 6S-8S two-photon transition,” Opt. Commun. 283, 1788–1791 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, “Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels,” Phys. Rev. A 83, 041804 (2011).
[CrossRef]

J. Y. Gao, S. H. Yang, D. Wang, X. Z. Guo, K. X. Chen, Y. Jiang, and B. Zhao, “Electromagnetically induced inhibition of two-photon absorption in sodium vapor,” Phys. Rev. A 61, 023401 (2000).
[CrossRef]

J. Javanainen and P. L. Gould, “Linear intensity dependence of a 2-photon transition rate,” Phys. Rev. A 41, 5088–5091 (1990).
[CrossRef]

Phys. Rev. Lett. (4)

J. Gea-Banacloche, “Two-photon absorption of nonclassical light,” Phys. Rev. Lett. 62, 1603–1606 (1989).
[CrossRef]

N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and A. S. Parkins, “Nonclassical excitation for atoms in a squeezed vacuum,” Phys. Rev. Lett. 75, 3426–3429 (1995).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009).
[CrossRef]

Proc. SPIE (1)

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Few photon switching with slow light in hollow fiber,” Proc. SPIE 7226, 722609 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Science (2)

A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005).
[CrossRef]

W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletic, “All-optical switch and transistor gated by one stored photon,” Science 341, 768–770 (2013).
[CrossRef]

Other (1)

S. Hooker and C. E. Webb, Laser Physics, Oxford Master Series in Physics Atomic, Optical, and Laser Physics (Oxford University, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Energy diagram of the TPT and Λ-type EIT in a cesium atomic system. The corresponding laser wavelengths of probe and control fields are labeled. Cascade fluorescence is collected to monitor the interference due to probe and control fields on the 8S level.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup for the control of the cesium TPT. BS, beam splitter; PMT, photomultiplier tube; PD, photo detector; SAS, saturation absorption spectroscopy.

Fig. 3.
Fig. 3.

(a) Series of TPT fluorescence signals with the frequency detuning of the probe field under various probe laser intensity. The control laser intensity was kept as 1.4W/mm2. The baseline of every curve is shifted by 0.5. The location of the dip due to the inhibition on the TPT created by the control field is indicated by the blue arrow. (b) Signal area of TPT fluorescence signals with different probe power.

Fig. 4.
Fig. 4.

TPT signals with the frequency detuning of the probe field when control field is off (0W/mm2) and on (1.4W/mm2). The probe laser power is 5.5W/mm2.

Metrics