Abstract

In this paper, we present optimized aperiodic structures for use as narrowband, highly directional thermal infrared emitters for both TE and TM polarizations. These aperiodic multilayer structures designed with alternating layers of silicon and silica on top of a semi-infinite tungsten substrate exhibit extremely high emittance peaked around the wavelength at which the structures are optimized. Structures were designed by a genetic optimization algorithm coupled to a transfer matrix code that computed thermal emittance. First, we investigate the properties of the genetic-algorithm-optimized aperiodic structures and compare them to a previously proposed resonant cavity design. Second, we investigate a structure optimized to operate at the Wien wavelength corresponding to a near-maximum operating temperature for the materials used in the aperiodic structure. Finally, we present a structure that exhibits narrowband and highly directional emittance for both TE and TM polarizations at the frequency of one of the molecular resonances of carbon monoxide (CO); hence, the design is suitable for the emitting portion of a detector of CO via absorption spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [CrossRef]
  2. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [CrossRef]
  3. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
    [CrossRef]
  4. D. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14, 8785–8796 (2006).
    [CrossRef]
  5. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
    [CrossRef]
  6. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
    [CrossRef]
  7. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
    [CrossRef]
  8. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
    [CrossRef]
  9. C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
    [CrossRef]
  10. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. Greffet, S. Collin, N. Bardou, and J. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
    [CrossRef]
  11. S. Han and D. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
    [CrossRef]
  12. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
    [CrossRef]
  13. N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
    [CrossRef]
  14. E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Maxwell equation simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. E 75, 056611 (2007).
    [CrossRef]
  15. E. J. Reed, M. Soljačić, R. Gee, and J. D. Joannopoulos, “Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. B 75, 174302 (2007).
    [CrossRef]
  16. G. Liang, P. Han, and H. Wang, “Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure,” Opt. Lett. 29, 192–194 (2004).
    [CrossRef]
  17. K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289 (1989).
    [CrossRef]
  18. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
    [CrossRef]
  19. D. R. Lide, CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2007).
  20. E. U. Condon, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).
  21. D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic algorithms,” in Foundations of Genetic Algorithms, G. J. E. Rawlins, ed. (Morgan Kaufmann, 1997), pp. 69–93.
  22. K. Deb and S. Agrawal, “Understanding interactions among genetic algorithm parameters,” in Foundations of Genetic Algorithms, W. Banzhaf and C. Reeves, eds. (Morgan Kaufmann, 1999), pp. 268–269.
  23. D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and the sizing of populations,” Comp. Syst. 6, 333–362 (1991).
  24. J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in electromagnetics,” in Proceedings of the IEEE International Symposium on Antennas and Propagation (IEEE, 1996), pp. 1480–1483.
  25. N. Tessler, S. Burns, H. Becker, and R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 70, 556–558 (1997).
    [CrossRef]
  26. A. L. Smith, The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, 1982).
  27. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
    [CrossRef]

2012

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

2011

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

2010

2009

2008

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[CrossRef]

2007

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Maxwell equation simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. E 75, 056611 (2007).
[CrossRef]

E. J. Reed, M. Soljačić, R. Gee, and J. D. Joannopoulos, “Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. B 75, 174302 (2007).
[CrossRef]

2006

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

D. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14, 8785–8796 (2006).
[CrossRef]

2005

2004

2002

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef]

1999

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[CrossRef]

1997

N. Tessler, S. Burns, H. Becker, and R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 70, 556–558 (1997).
[CrossRef]

1991

D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and the sizing of populations,” Comp. Syst. 6, 333–362 (1991).

1989

K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289 (1989).
[CrossRef]

Agrawal, S.

K. Deb and S. Agrawal, “Understanding interactions among genetic algorithm parameters,” in Foundations of Genetic Algorithms, W. Banzhaf and C. Reeves, eds. (Morgan Kaufmann, 1999), pp. 268–269.

Alú, A.

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

Argryopoulos, C.

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

Arnold, C.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. Greffet, S. Collin, N. Bardou, and J. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[CrossRef]

Bardou, N.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. Greffet, S. Collin, N. Bardou, and J. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[CrossRef]

Becker, H.

N. Tessler, S. Burns, H. Becker, and R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 70, 556–558 (1997).
[CrossRef]

Bermel, P.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Biener, G.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[CrossRef]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef]

Bloemer, M. J.

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

Burns, S.

N. Tessler, S. Burns, H. Becker, and R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 70, 556–558 (1997).
[CrossRef]

Carminati, R.

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. Greffet, S. Collin, N. Bardou, and J. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

Celanovic, I.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Chan, D.

Chan, D. L. C.

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

Chan, W. R.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

Clark, J. H.

D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and the sizing of populations,” Comp. Syst. 6, 333–362 (1991).

Collin, S.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. Greffet, S. Collin, N. Bardou, and J. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[CrossRef]

Condon, E. U.

E. U. Condon, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).

Cornelius, C. M.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[CrossRef]

D’Aguanno, G.

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

Dahan, N.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[CrossRef]

Deb, K.

D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and the sizing of populations,” Comp. Syst. 6, 333–362 (1991).

D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic algorithms,” in Foundations of Genetic Algorithms, G. J. E. Rawlins, ed. (Morgan Kaufmann, 1997), pp. 69–93.

K. Deb and S. Agrawal, “Understanding interactions among genetic algorithm parameters,” in Foundations of Genetic Algorithms, W. Banzhaf and C. Reeves, eds. (Morgan Kaufmann, 1999), pp. 268–269.

Dowling, J. P.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[CrossRef]

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef]

Fan, S.

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef]

Florescu, L.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Florescu, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Foreman, J.

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

Friend, R. H.

N. Tessler, S. Burns, H. Becker, and R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 70, 556–558 (1997).
[CrossRef]

Garin, M.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

Gee, R.

E. J. Reed, M. Soljačić, R. Gee, and J. D. Joannopoulos, “Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. B 75, 174302 (2007).
[CrossRef]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Goldberg, D. E.

D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and the sizing of populations,” Comp. Syst. 6, 333–362 (1991).

D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic algorithms,” in Foundations of Genetic Algorithms, G. J. E. Rawlins, ed. (Morgan Kaufmann, 1997), pp. 69–93.

Greffet, J.

Greffet, J. J.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

Han, P.

Han, S.

Hasman, E.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[CrossRef]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef]

Joannopoulos, J. D.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

E. J. Reed, M. Soljačić, R. Gee, and J. D. Joannopoulos, “Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. B 75, 174302 (2007).
[CrossRef]

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Maxwell equation simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. E 75, 056611 (2007).
[CrossRef]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

D. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14, 8785–8796 (2006).
[CrossRef]

Johnson, J. M.

J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in electromagnetics,” in Proceedings of the IEEE International Symposium on Antennas and Propagation (IEEE, 1996), pp. 1480–1483.

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Kleiner, V.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[CrossRef]

Krishnakumar, K.

K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289 (1989).
[CrossRef]

Laroche, M.

Lee, H.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Liang, G.

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2007).

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

Marquier, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. Greffet, S. Collin, N. Bardou, and J. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623–2625 (2005).
[CrossRef]

Mattiucci, N.

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

Niv, A.

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[CrossRef]

Norris, D.

Pardo, F.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

Pelouard, J.

Pelouard, J. L.

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Pralle, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Puscasu, I.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Rahmat-Samii, Y.

J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in electromagnetics,” in Proceedings of the IEEE International Symposium on Antennas and Propagation (IEEE, 1996), pp. 1480–1483.

Reed, E. J.

E. J. Reed, M. Soljačić, R. Gee, and J. D. Joannopoulos, “Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. B 75, 174302 (2007).
[CrossRef]

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Maxwell equation simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. E 75, 056611 (2007).
[CrossRef]

Rephaeli, E.

Smith, A. L.

A. L. Smith, The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, 1982).

Soljacic, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Maxwell equation simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. E 75, 056611 (2007).
[CrossRef]

E. J. Reed, M. Soljačić, R. Gee, and J. D. Joannopoulos, “Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. B 75, 174302 (2007).
[CrossRef]

D. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14, 8785–8796 (2006).
[CrossRef]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

Tessler, N.

N. Tessler, S. Burns, H. Becker, and R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 70, 556–558 (1997).
[CrossRef]

Ting, D.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Wang, H.

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Appl. Phys. Lett.

N. Tessler, S. Burns, H. Becker, and R. H. Friend, “Suppressed angular color dispersion in planar microcavities,” Appl. Phys. Lett. 70, 556–558 (1997).
[CrossRef]

G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent theremal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett. 92, 081913 (2008).
[CrossRef]

N. Mattiucci, G. D’Aguanno, A. Alú, C. Argryopoulos, J. Foreman, and M. J. Bloemer, “Taming the thermal emissivity of metals: a metamaterial approach,” Appl. Phys. Lett. 100, 201109 (2012).
[CrossRef]

Comp. Syst.

D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and the sizing of populations,” Comp. Syst. 6, 333–362 (1991).

Nature

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef]

Nature (London)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Resonant transmission through a metallic film due to coupled modes,” Nature (London) 416, 61–64 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999).
[CrossRef]

Phys. Rev. B

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

C. Arnold, F. Marquier, M. Garin, F. Pardo, S. Collin, N. Bardou, J. L. Pelouard, and J. J. Greffet, “Coherent thermal infrared emission by two-dimensional silicon carbide gratings,” Phys. Rev. B 86, 035316 (2012).
[CrossRef]

E. J. Reed, M. Soljačić, R. Gee, and J. D. Joannopoulos, “Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. B 75, 174302 (2007).
[CrossRef]

Phys. Rev. E

E. J. Reed, M. Soljačić, and J. D. Joannopoulos, “Maxwell equation simulations of coherent optical photon emission from shock waves in crystals,” Phys. Rev. E 75, 056611 (2007).
[CrossRef]

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E 74, 016609 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2012).
[CrossRef]

Proc. SPIE

K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289 (1989).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Other

D. R. Lide, CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2007).

E. U. Condon, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).

D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in genetic algorithms,” in Foundations of Genetic Algorithms, G. J. E. Rawlins, ed. (Morgan Kaufmann, 1997), pp. 69–93.

K. Deb and S. Agrawal, “Understanding interactions among genetic algorithm parameters,” in Foundations of Genetic Algorithms, W. Banzhaf and C. Reeves, eds. (Morgan Kaufmann, 1999), pp. 268–269.

J. M. Johnson and Y. Rahmat-Samii, “Genetic algorithms in electromagnetics,” in Proceedings of the IEEE International Symposium on Antennas and Propagation (IEEE, 1996), pp. 1480–1483.

A. L. Smith, The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of structure optimized by genetic algorithm coupled to the transfer matrix code. Incident light at an angle θ to the normal of the surface of the structure enters the n -layer alternating structure of silicon and silica above a semi-infinite tungsten substrate.

Fig. 2.
Fig. 2.

(a) Emittance versus angle of an aperiodic multilayer structure of six, eight, and 16 alternating layers of silicon and silica over a semi-infinite tungsten substrate. The structure is optimized such that the integral of the emittance over all angles for λ 0 = 2.357 μm is minimized subject to the constraint that the emittance at normal incidence is greater than 0.95. The layer thicknesses of the optimized structure (in units of micrometers) are {1.53, 0.46, 0.17, 0.36, 2.32, 2.0} for the six-layer structure, {2.21, 0.45, 1.83, 1.92, 1.18, 1.49, 0.19, 2.07} for the eight-layer structure, and {2.25, 1.28, 0.49, 1.95, 2.27, 1.14, 0.85, 2.03, 0.33, 1.94, 2.34, 2.28, 0.92, 2.36, 1.27, 1.18} for the 16-layer structure. The red dashed line depicts a four-layer quarter-wave stack of alternating layers of silicon and silica followed by a half-wavelength resonant cavity over a semi-infinite tungsten substrate tuned to λ 0 = 2.357 μm . (b) Emittance versus wavelength of the same structures described in (a) at normal incidence.

Fig. 3.
Fig. 3.

Profile of the electric field amplitude, normalized with respect to the field amplitude of the incident plane wave for the six-layer genetic-algorithm-optimized aperiodic structure described in Fig. 2(a). The structure is excited by a normally incident plane wave at the resonant wavelength of λ 0 = 2.357 μm .

Fig. 4.
Fig. 4.

(a) Angular emittance of the six-layer aperiodic structure described in Fig. 2(a). (b) Angular emittance for the periodic structure described in Fig. 2(a).

Fig. 5.
Fig. 5.

Emittance as a function of wavelength and angle for the six-layer genetic-algorithm-optimized aperiodic structure described in Fig. 2(a).

Fig. 6.
Fig. 6.

(a) Emittance versus angle of an aperiodic multilayer structure of six, eight, and 16 alternating layers of silicon and silica over a semi-infinite tungsten substrate. The structure is optimized such that the integral of the emittance for λ 0 = 1.931 μm over all angles is minimized subject to the constraint that the emittance at normal incidence is greater than 0.95. The layer thicknesses of the optimized structure (in units of micrometers) are {1.81, 0.36, 0.12, 1.83, 0.43, 1.09} for the six-layer structure, {1.81, 0.29, 0.72, 0.35, 0.72, 1.82, 0.72, 0.26} for the eight-layer structure, and {1.55, 0.9, 1.56, 1.63, 1.21, 1.62, 0.39, 1.24, 1.30, 0.34, 0.77, 1.87, 1.54, 0.23, 0.24, 0.24} for the 16-layer structure. (b) Emittance versus wavelength of the same aperiodic structures described in (a) at normal incidence.

Fig. 7.
Fig. 7.

(a) Emittance versus angle of an aperiodic multilayer structure of six, eight, and 16 alternating layers of silicon and silica over a semi-infinite tungsten substrate. The structure is optimized such that the integral of the emittance for λ = 4.7 μm over all angles is minimized subject to the constraint that the emittance at normal incidence is greater than 0.95. The layer thicknesses of the optimized structure (in units of micrometers) are {3.77, 0.9, 3.76, 4.49, 4.62, 3.16} for the six-layer structure, {3.75, 0.91, 2.40, 4.53, 4.51, 1.28, 3.93, 2.94} for the eight-layer structure, and {4.47, 0.88, 0.39, 1.02, 0.35, 0.91, 1.14, 4.00, 2.03, 2.39, 1.72, 3.38, 0.34, 0.99, 3.04, 4.15} for the 16-layer structure. (b) Emittance versus wavelength of the same aperiodic structures described in (a) at normal incidence.

Tables (3)

Tables Icon

Table 1. Angular FWHM δ θ n and Spectral FWHM δ λ n of the Structures Described in Fig. 2(a)

Tables Icon

Table 2. Angular FWHM δ θ n and Spectral FWHM δ λ n of the Structures Described in Fig. 6(a)

Tables Icon

Table 3. Angular FWHM δ θ n and Spectral FWHM δ λ n of the Structures Described in Fig. 7(a)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A TE / TM ( λ , θ ) = 1 R TE / TM ( λ , θ ) ,
F ( λ 0 ) = 0 ° 90 ° ϵ Total ( λ 0 , θ ) d θ ,
B ( λ , T ) = 2 h c 2 λ 5 1 e h c λ k B T 1 ,
μ ( λ ) = ϵ ( λ ) B ( λ , T ) .
x e x e x 1 = 5 ,
λ max = h c x k B T ,

Metrics