Abstract

Full detail of a proposed experiment required for implementing and verifying a theoretical scheme for four-partite splitting and open-destination teleportation of an arbitrary two-qubit photonic state is discussed. In this proposed experiment the quantum channel is provided by a pair of decomposable generalized (G) Bell states, which offer the experimental advantage that they can be very easily generated in photonic experiments. Our experiment is based on generating a two-qubit photonic state by ultrafast spontaneous parametric downconversion in nonlinear crystal and relies on Bell-state measurements, which in this experiment are performed by an optical Bell-state analyzer that can unambiguously determine all four Bell states. In this proposed experiment unitary transformation required at the destination station is implemented using a quantum control NOT gate. We finally show that in our four-partite optical system the two-qubit photonic state originally prepared at a sending station can be experimentally split and subsequently regenerated at any one of the three distinct receiving stations.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Scheme for teleportation of atomic states within cavities in thermal states

Jin-Ming Liu, Bo Weng, and Yong Xia
J. Opt. Soc. Am. B 23(8) 1499-1505 (2006)

Quantum teleportation over the Swisscom telecommunication network

Olivier Landry, J. A. W. van Houwelingen, Alexios Beveratos, Hugo Zbinden, and Nicolas Gisin
J. Opt. Soc. Am. B 24(2) 398-403 (2007)

Use of quantum encoders and quantum decoding for implementing the CNOT gate

Y. Ben-Aryeh
J. Opt. Soc. Am. B 25(12) 1965-1971 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription