Abstract

Full detail of a proposed experiment required for implementing and verifying a theoretical scheme for four-partite splitting and open-destination teleportation of an arbitrary two-qubit photonic state is discussed. In this proposed experiment the quantum channel is provided by a pair of decomposable generalized (G) Bell states, which offer the experimental advantage that they can be very easily generated in photonic experiments. Our experiment is based on generating a two-qubit photonic state by ultrafast spontaneous parametric downconversion in nonlinear crystal and relies on Bell-state measurements, which in this experiment are performed by an optical Bell-state analyzer that can unambiguously determine all four Bell states. In this proposed experiment unitary transformation required at the destination station is implemented using a quantum control NOT gate. We finally show that in our four-partite optical system the two-qubit photonic state originally prepared at a sending station can be experimentally split and subsequently regenerated at any one of the three distinct receiving stations.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [CrossRef]
  2. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
    [CrossRef]
  3. S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
    [CrossRef]
  4. S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
    [CrossRef]
  5. P. S. Bhatia, “Experimental tripartite quantum state sharing and perfect teleportation of two-qubit photonic state using genuinely entangled multipartite states,” J. Opt. Soc. Am. B 31, 154–163 (2014).
    [CrossRef]
  6. P. S. Bhatia, “Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel. part 1: theory,” J. Opt. Soc. Am. B 31, 972–979 (2014).
    [CrossRef]
  7. G. Rigolin, “Superdense coding using multipartite states,” quant-ph/0407193 at ( http://xxx.lanl.gov ) (2004).
  8. G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
    [CrossRef]
  9. W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
    [CrossRef]
  10. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
    [CrossRef]
  11. C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
    [CrossRef]
  12. S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
    [CrossRef]
  13. Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
    [CrossRef]
  14. Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
    [CrossRef]
  15. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [CrossRef]
  16. H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
    [CrossRef]
  17. I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008).
    [CrossRef]
  18. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002).
    [CrossRef]
  19. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
    [CrossRef]
  20. E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
    [CrossRef]
  21. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
    [CrossRef]
  22. S. Lloyd, M. S. Shahriar, and J. H. Shapiro, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
    [CrossRef]
  23. T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
    [CrossRef]
  24. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
    [CrossRef]
  25. W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
    [CrossRef]
  26. M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
    [CrossRef]
  27. C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
    [CrossRef]
  28. J. Preskill, “Battling decoherence: the fault-tolerant quantum computer,” Phys. Today 52(6), 24–30 (1999).
    [CrossRef]
  29. R. W. Boyd, Nonlinear Optics (Elsevier-Science, 2008).
  30. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef]
  31. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  32. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by down-conversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
    [CrossRef]
  33. M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
    [CrossRef]
  34. Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
    [CrossRef]
  35. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).
  36. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  37. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [CrossRef]
  38. S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
    [CrossRef]
  39. P. S. Bhatia, C. W. McCluskey, and J. W. Keto, “Calibration of a computer controlled precision wavemeter for use with pulsed lasers,” Appl. Opt. 38, 2486–2498 (1999).
    [CrossRef]
  40. P. S. Bhatia, J. P. Holder, and J. W. Keto, “Highly sensitive optically heterodyne, Raman-induced Kerr-effect spectrometer using pulsed lasers,” J. Opt. Soc. Am. B 14, 263–270 (1997).
    [CrossRef]
  41. P. S. Bhatia and J. W. Keto, “Pressure and power dependence of the optically heterodyne Raman-induced Kerr effect line shape,” Phys. Rev. A 59, 4045–4051 (1999).
    [CrossRef]
  42. M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93, 040504 (2004).
    [CrossRef]
  43. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [CrossRef]

2014

2009

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[CrossRef]

2008

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008).
[CrossRef]

2007

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

2006

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

2005

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

2004

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
[CrossRef]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef]

M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93, 040504 (2004).
[CrossRef]

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

2003

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

2002

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002).
[CrossRef]

2001

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by down-conversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
[CrossRef]

S. Lloyd, M. S. Shahriar, and J. H. Shapiro, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef]

2000

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

1999

J. Preskill, “Battling decoherence: the fault-tolerant quantum computer,” Phys. Today 52(6), 24–30 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

P. S. Bhatia, C. W. McCluskey, and J. W. Keto, “Calibration of a computer controlled precision wavemeter for use with pulsed lasers,” Appl. Opt. 38, 2486–2498 (1999).
[CrossRef]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

P. S. Bhatia and J. W. Keto, “Pressure and power dependence of the optically heterodyne Raman-induced Kerr effect line shape,” Phys. Rev. A 59, 4045–4051 (1999).
[CrossRef]

1997

P. S. Bhatia, J. P. Holder, and J. W. Keto, “Highly sensitive optically heterodyne, Raman-induced Kerr-effect spectrometer using pulsed lasers,” J. Opt. Soc. Am. B 14, 263–270 (1997).
[CrossRef]

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Atature, M.

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Bakr, W. S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[CrossRef]

Banaszek, K.

Barrett, M. D.

M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
[CrossRef]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Berthiaume, A.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Bhatia, P. S.

Blatt, R.

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[CrossRef]

Bloch, I.

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008).
[CrossRef]

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

Booth, M. C.

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Bourennane, M.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Bouwmeester, D.

M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93, 040504 (2004).
[CrossRef]

Bowen, W. P.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Elsevier-Science, 2008).

Briegel, H. J.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Brune, M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Buzek, V.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Chen, Y.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Chiaverini, J.

M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
[CrossRef]

Choudhury, S. W.

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

Cirac, J. I.

T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Dalibard, J.

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93, 040504 (2004).
[CrossRef]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Folling, S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[CrossRef]

Gaertner, S.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

Gardiner, S.

T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Gasparoni, S.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef]

Gillen, J. I.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[CrossRef]

Gisin, N.

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Giuseppe, G. D.

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Goebel, A.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Greiner, M.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[CrossRef]

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

Hahley, E.

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Hansch, T. W.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

Haroche, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

Hillery, M.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Holder, J. P.

Irvine, W. T. M.

M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93, 040504 (2004).
[CrossRef]

Itano, W. M.

M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
[CrossRef]

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Joannopoulos, J. D.

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Keto, J. W.

Kielpinski, D.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002).
[CrossRef]

Kim, Y.

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef]

Kimble, H. J.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

King, D. E.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Klelplnski, D.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Kulik, S. P.

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef]

Kurtsiefer, C.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Lam, P. K.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Lance, A. M.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Langer, C.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Lloyd, S.

S. Lloyd, M. S. Shahriar, and J. H. Shapiro, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef]

Mabuchi, H.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Mair, A.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Maitre, X.

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Mandel, O.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

McCluskey, C. W.

Meyer, V.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Mogues, G.

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Monroe, C.

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002).
[CrossRef]

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Muralidharan, S.

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

Myatt, C. J.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Pan, J.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Pan, J. W.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef]

Panigrahi, P. K.

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

Pellizzari, T.

T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Peng, A.

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[CrossRef]

Preskill, J.

J. Preskill, “Battling decoherence: the fault-tolerant quantum computer,” Phys. Today 52(6), 24–30 (1999).
[CrossRef]

Raimond, J.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Raimond, J. M.

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Rigolin, G.

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

Rom, T.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

Rowe, M.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Rudolph, T.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef]

Sackett, C. A.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Saleh, B. E. A.

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Sander, B. C.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

Sanders, B. C.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Schaetz, T.

M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
[CrossRef]

Schmid, C.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Schmiedmayer, J.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Sergienko, A. V.

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Shahriar, M. S.

S. Lloyd, M. S. Shahriar, and J. H. Shapiro, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef]

Shapiro, J. H.

S. Lloyd, M. S. Shahriar, and J. H. Shapiro, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Shih, Y.

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).

Symul, T.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

Teich, M. C.

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

Tittel, W.

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Trojek, P.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Turchette, Q. A.

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Tyc, T.

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

U’Ren, A. B.

Wagenknecht, C.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Walmsley, I. A.

Walther, P.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef]

Weinfurter, H.

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Widera, A.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

Wineland, D.

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[CrossRef]

Wineland, D. J.

M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
[CrossRef]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002).
[CrossRef]

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Wunderlich, C.

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Yang, T.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Ye, J.

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

Zbinden, H.

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Zeilinger, A.

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Zhang, A.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Zhang, Q.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Zhao, B.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Zhao, Z.

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

Zoller, P.

T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Zukowski, M.

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

Zwerger, W.

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. A

S. W. Choudhury, S. Muralidharan, and P. K. Panigrahi, “Quantum teleportation and state sharing using a genuinely entangled six-qubit state,” J. Phys. A 42, 115303 (2009).
[CrossRef]

Nat. Mater.

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Nat. Phys.

Q. Zhang, A. Goebel, C. Wagenknecht, Y. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, “Experimental quantum teleportation of a two-qubit composite system,” Nat. Phys. 2, 678–682 (2006).
[CrossRef]

Nature

Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004).
[CrossRef]

D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002).
[CrossRef]

R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[CrossRef]

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003).
[CrossRef]

W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[CrossRef]

M. D. Barrett, J. Chiaverini, T. Schaetz, W. M. Itano, and D. J. Wineland, “Deterministic quantum teleportation of atomic qubit,” Nature 429, 737–739 (2004).
[CrossRef]

C. A. Sackett, D. Klelplnski, D. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sander, T. Tyc, T. C. Ralph, and P. K. Lam, “Continuous-variable quantum-state sharing via quantum disentanglement,” Phys. Rev. A 71, 033814 (2005).
[CrossRef]

S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum state sharing, and superdense coding through a genuinely entangled five qubit state,” Phys. Rev. A 77, 032321 (2008).
[CrossRef]

M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with perodic nonlinearity,” Phys. Rev. A 66, 023815 (2002).
[CrossRef]

P. S. Bhatia and J. W. Keto, “Pressure and power dependence of the optically heterodyne Raman-induced Kerr effect line shape,” Phys. Rev. A 59, 4045–4051 (1999).
[CrossRef]

G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005).
[CrossRef]

W. Tittel, H. Zbinden, and N. Gisin, “Experimental demonstration of quantum secret sharing,” Phys. Rev. A 63, 042301 (2001).
[CrossRef]

Phys. Rev. Lett

Y. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete Bell-state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[CrossRef]

Phys. Rev. Lett.

M. J. A. de Dood, W. T. M. Irvine, and D. Bouwmeester, “Nonlinear photonic crystals as a source of entangled photons,” Phys. Rev. Lett. 93, 040504 (2004).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

S. Gasparoni, J. W. Pan, P. Walther, T. Rudolph, and A. Zeilinger, “Realization of photonic controlled-NOT gate sufficient for quantum computation,” Phys. Rev. Lett. 93, 020504 (2004).
[CrossRef]

A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004).
[CrossRef]

C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. 95, 230505 (2005).
[CrossRef]

S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-Party quantum secret sharing,” Phys. Rev. Lett. 98, 020503 (2007).
[CrossRef]

E. Hahley, X. Maitre, G. Mogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of EPR pair of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

S. Lloyd, M. S. Shahriar, and J. H. Shapiro, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef]

T. Pellizzari, S. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef]

Phys. Today

J. Preskill, “Battling decoherence: the fault-tolerant quantum computer,” Phys. Today 52(6), 24–30 (1999).
[CrossRef]

Rev. Mod. Phys.

I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008).
[CrossRef]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[CrossRef]

Science

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[CrossRef]

Other

G. Rigolin, “Superdense coding using multipartite states,” quant-ph/0407193 at ( http://xxx.lanl.gov ) (2004).

R. W. Boyd, Nonlinear Optics (Elsevier-Science, 2008).

R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics