Abstract

We study theoretically a pulse compression method with gas-filled hollow-core fiber (HCF) based on pulse division. The input pulse is first divided temporally into a sequence of almost identical subpulses by birefringent optical elements that are designed to have nearly zero group delay dispersion. Then, these subpulses are coupled into gas-filled HCF for spectrum broadening independently. Last, the subpulses are recombined into one pulse by the birefringent elements and compressed temporally. This method is demonstrated to be suitable for compressing ultrafast pulses with energies far above the millijoule to few-cycle level. Several key issues on successfully implementing this method are analyzed quantitatively, and the limitations are also discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
    [CrossRef]
  2. S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
    [CrossRef]
  3. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  4. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16  TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
    [CrossRef]
  5. A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and J. Biegert, “Simulation of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010).
    [CrossRef]
  6. F. Giambruno, C. Radier, G. Rey, and G. Cheriaux, “Design of a 10  PW (150  J/15  fs) peak power laser system with Ti:sapphire medium through spectral control,” Appl. Opt. 50, 2617–2621 (2011).
    [CrossRef]
  7. C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Broadband amplification by picosecond OPCPA in DKDP pumped at 515  nm,” Opt. Express 20, 4619–4629 (2012).
    [CrossRef]
  8. S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
    [CrossRef]
  9. S. Zhou and F. W. Wise, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett. 32, 871–873 (2007).
    [CrossRef]
  10. L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier,” Opt. Lett. 37, 253–255 (2012).
    [CrossRef]
  11. Y. Zaouter, F. Guichard, L. Daniault, M. Hanna, F. Morin, C. Honninger, E. Mottay, F. Druon, and P. Georges, “Femtosecond fiber chirped- and divided-pulse amplification system,” Opt. Lett. 38, 106–108 (2013).
    [CrossRef]
  12. A. Klenke, M. Kienel, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, “Divided-pulse nonlinear compression,” Opt. Lett. 38, 4593–4595 (2013).
    [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  14. http://refractiveindex.info .
  15. R. Paschotta, www.rp-photonics.com/b_integral.html .
  16. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005).
    [CrossRef]
  17. C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
    [CrossRef]
  18. E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” AT&T Tech. J. 43, 1783–1809 (1964).
    [CrossRef]
  19. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
    [CrossRef]
  20. D. Wang and Y. Leng, “Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime,” Opt. Commun. 307, 17–24 (2013).
    [CrossRef]
  21. M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).
  22. M. Kienel, A. Klenke, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, “Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification,” Opt. Lett. 39, 1049–1052 (2014).
    [CrossRef]

2014 (1)

2013 (4)

D. Wang and Y. Leng, “Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime,” Opt. Commun. 307, 17–24 (2013).
[CrossRef]

Y. Zaouter, F. Guichard, L. Daniault, M. Hanna, F. Morin, C. Honninger, E. Mottay, F. Druon, and P. Georges, “Femtosecond fiber chirped- and divided-pulse amplification system,” Opt. Lett. 38, 106–108 (2013).
[CrossRef]

A. Klenke, M. Kienel, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, “Divided-pulse nonlinear compression,” Opt. Lett. 38, 4593–4595 (2013).
[CrossRef]

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
[CrossRef]

2012 (2)

2011 (1)

2010 (2)

2009 (1)

2007 (2)

S. Zhou and F. W. Wise, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett. 32, 871–873 (2007).
[CrossRef]

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[CrossRef]

2005 (1)

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005).
[CrossRef]

2004 (1)

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

2001 (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

1964 (1)

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” AT&T Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Ahmad, I.

Arisholm, G.

Bates, P. K.

Berge, L.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[CrossRef]

Biegert, J.

Bohman, S.

Born, M.

M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cheriaux, G.

Collier, J. L.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Couairon, A.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
[CrossRef]

Courtois, C.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
[CrossRef]

Cros, B.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
[CrossRef]

Dangor, A. E.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Daniault, L.

Divall, E. J.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Druon, F.

Eidam, T.

Foster, P. S.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Gallacher, J. G.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Georges, P.

Giambruno, F.

Guichard, F.

Hadrich, S.

Hanna, M.

Hatayama, M.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005).
[CrossRef]

Herrmann, D.

Honninger, C.

Hooker, C. J.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Hooker, S. M.

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
[CrossRef]

Jaroszynski, D. A.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Kanai, T.

Karsch, S.

Kasparian, J.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[CrossRef]

Kienel, M.

Klenke, A.

Klingebiel, S.

Kong, L. J.

Krausz, F.

Krushelnick, K.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Langley, A. J.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Lefrancois, S.

Leng, Y.

D. Wang and Y. Leng, “Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime,” Opt. Commun. 307, 17–24 (2013).
[CrossRef]

Limpert, J.

Major, Z.

Mangles, S. P. D.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Marcatili, E. A.

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” AT&T Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Marques, J. R.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
[CrossRef]

Matthieussent, G.

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
[CrossRef]

Midorikawa, K.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
[CrossRef]

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005).
[CrossRef]

Mori, W. B.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Morin, F.

Mottay, E.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Murphy, C. D.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Nagasaka, K.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005).
[CrossRef]

Najmudin, Z.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Norreys, P. A.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Nuter, R.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[CrossRef]

Ouzounov, D. G.

Pervak, V.

Radier, C.

Rey, G.

Schmeltzer, R. A.

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” AT&T Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Schmid, K.

Skrobol, C.

Skupin, S.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Suda, A.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
[CrossRef]

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005).
[CrossRef]

Tautz, R.

Tavella, F.

Thai, A.

Thomas, A. G. R.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Trushin, S. A.

Tsung, F. S.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Tunnermann, A.

Veisz, L.

Viskup, R.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Walton, B. R.

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Wandt, C.

Wang, D.

D. Wang and Y. Leng, “Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime,” Opt. Commun. 307, 17–24 (2013).
[CrossRef]

Wise, F. W.

Wolf, E.

M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).

Wolf, J.-P.

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[CrossRef]

Yamaguchi, S.

Yang, C. X.

Zaouter, Y.

Zhao, L. M.

Zhou, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116 (2005).
[CrossRef]

AT&T Tech. J. (1)

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” AT&T Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Nat. Photonics (1)

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
[CrossRef]

Nature (1)

S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,” Nature 431, 535–538 (2004).
[CrossRef]

Opt. Commun. (2)

D. Wang and Y. Leng, “Intense optical pulse compression with gas-filled hollow-core fibers and bulk materials in anomalous dispersion regime,” Opt. Commun. 307, 17–24 (2013).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, “Generation of 5.0  fs, 5.0  mJ pulses at 1  kHz using hollow-fiber pulse compression,” Opt. Lett. 35, 1887–1889 (2010).
[CrossRef]

S. Zhou and F. W. Wise, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett. 32, 871–873 (2007).
[CrossRef]

L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier,” Opt. Lett. 37, 253–255 (2012).
[CrossRef]

Y. Zaouter, F. Guichard, L. Daniault, M. Hanna, F. Morin, C. Honninger, E. Mottay, F. Druon, and P. Georges, “Femtosecond fiber chirped- and divided-pulse amplification system,” Opt. Lett. 38, 106–108 (2013).
[CrossRef]

A. Klenke, M. Kienel, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, “Divided-pulse nonlinear compression,” Opt. Lett. 38, 4593–4595 (2013).
[CrossRef]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16  TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
[CrossRef]

A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and J. Biegert, “Simulation of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010).
[CrossRef]

M. Kienel, A. Klenke, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, “Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification,” Opt. Lett. 39, 1049–1052 (2014).
[CrossRef]

Phys. Plasmas (1)

C. Courtois, A. Couairon, B. Cros, J. R. Marques, and G. Matthieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001).
[CrossRef]

Rep. Prog. Phys. (1)

L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007).
[CrossRef]

Other (4)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

http://refractiveindex.info .

R. Paschotta, www.rp-photonics.com/b_integral.html .

M. Born and E. Wolf, Principle of Optics (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

General configuration of divided-pulse nonlinear compression. PD, pulse division stage; SB, spectrum broadening stage; RC, recombination and compression stage.

Fig. 2.
Fig. 2.

(a) GDD difference (unit: fs2) at 800 nm between o and e axes with respect to the thickness of YVO4 and the thickness ratio of LiNbO3 to YVO4. The black dashed line indicates the ratio of 1.79 where the GDD difference is 0. (b) Temporal broadening (red lines with circles) and separation (blue solid line) with respect to the thickness of crystal for different input pulse FTL durations. The dashed–dotted line indicates the upper limit of allowable pulse durations before spectral broadening.

Fig. 3.
Fig. 3.

(a)–(d) Four different configurations of PD with chirp compensation. CP, crystal pair; CC, chirp compensation; SB, spectrum broadening stage. (e) B integrals accumulated in three crystals with respect to subpulse energies for a 25 fs input pulse at 800 nm for the four different configurations. (f) B integrals of fixed final subpulse energy with respect to the number of crystals for the four different configurations.

Fig. 4.
Fig. 4.

(a) Coordinates of polarizations and directions of the polarization axes of the crystals used in this work. Pulse temporal profiles of the final subpulse with (black solid line) or without (red circle line) TOD compensation for (b) 25 fs, 4.3 mJ and (c) 40 fs, 100 mJ input pulses.

Fig. 5.
Fig. 5.

Pulse durations after HCF for subpulses of (a) 0.54 mJ, 25 fs and (b) 3.12 mJ, 40 fs. The black-dot and red-circle lines indicate the FTL durations simulated without or with ionization effects, respectively. The blue-square lines indicate the compressed durations with optimum chirp compensation.

Fig. 6.
Fig. 6.

Spectral intensities and group delays of the subpulses after spectral broadening with energies (a) and (b) 0.54 mJ at 1.2 bar and (c) and (d) 3.12 mJ at 1.6 bar. Results of different subpulses are on top of each other.

Fig. 7.
Fig. 7.

Recombined pulse temporal information after compression with optimum chirp compensation at different gas pressures for (a), (c), and (e) 25 fs, 4.3 mJ and (b), (d), and (f) 40 fs, 100 mJ input pulses. (a) and (b) temporal intensity profiles on the x axis, normalized at peak intensities at the lowest pressures; (c) and (d) angles between the long axis of the polarization ellipse of recombined pulses and the x axis; (e) and (f) polarization degrees of the recombined pulses.

Fig. 8.
Fig. 8.

Intensity-weighted polarization degrees with respect to the thickness error standard deviation. (a) Crystals used for recombination are independent of those in the division stage, and (b) crystals used for recombination are the same as those in the division stage.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(ξiL^)U=iT^[ω0cn2h|U|2U]σ2dUiqe22meε0cω0T^1[dU]12f|U|2U,
ρt=W(ρntρ)+σIpρI,
Uout(t)=FFT1{exp[iϕRC(ω)]FFT{N^SPM{FFT1[exp[iϕDiv(ω)]FFT[Uin(t)]]}}},
N^SPM=exp{iγL|FFT1[exp[iϕDiv(ω)]FFT[Uin(t)]]|2},

Metrics