Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum information splitting and open-destination teleportation using decomposable multipartite quantum channel. part 1: theory

Not Accessible

Your library or personal account may give you access

Abstract

The theory of an experimentally feasible four-partite scheme for splitting and open-destination teleportation of an arbitrary two-qubit state is presented. In this scheme, the quantum channel is provided by a pair of four-qubit generalized (G) Bell-states, which are decomposable. We show that not all possible distributions of entangled qubits to four communicating parties result in successful open-destination teleportation. We theoretically prove that two Bell-state measurements performed by a sender result in splitting, distributing, and locking the two-qubit state among three different receivers. The complete details of the procedure for unlocking the shared two-qubit state and eventually regenerating it at the location of any one of the three receiving stations is theoretically analyzed. This unlocking and regeneration procedure consists of local operations and classical communication (LOCC) performed by the remaining two receivers.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Multihop nondestructive teleportation via different nonmaximally entangled channels

Fenxiang Fu and Min Jiang
J. Opt. Soc. Am. B 37(2) 233-243 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved