Abstract

The application of patterned photoalignment of reactive mesogen by a novel alignment of a polymer to create anisotropic diffraction gratings is demonstrated. It is shown that the weak sensitivity of the photoinduced surface anisotropy of the aligning layer to additional UV exposure greatly simplifies the procedure of grating formation. Anisotropic diffraction is investigated experimentally, and the results are confirmed by theoretical simulation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Davis and G. H. Evans, “Polarizing binary diffraction grating beam splitter,” Opt. Lett. 29, 1443–1445 (2004).
    [CrossRef]
  2. O. Chulwoo and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
    [CrossRef]
  3. C. Oh, R. K. Komanduri, B. L. Conover, and M. J. Escuti, “Polarization-independent modulation using standard liquid crystal microdisplays and polymer polarization gratings,” in International Display Research Conference Digest (Society for Information Display, 2008), pp. 298–301.
  4. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17, 1817–1830 (2009).
    [CrossRef]
  5. E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.
  6. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef]
  7. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  8. C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
    [CrossRef]
  9. X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
    [CrossRef]
  10. N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
    [CrossRef]
  11. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
    [CrossRef]
  12. H. Ono, A. Hatayama, A. Emoto, and N. Kawatsuki, “Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals,” Opt. Mater. 30, 248–254 (2007).
  13. H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).
  14. H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29, 2386–2391 (2012).
    [CrossRef]
  15. U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).
  16. U. V. Mahilny and A. V. Trofimova, “A new mechanism of stable optical birefringence recording under polarized UV radiation in photocrosslinking polymeric materials,” J. Opt. 13, 105601 (2011).
    [CrossRef]
  17. A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).
  18. U. V. Mahilny, A. I. Stankevich, A. A. Muravsky, and A. A. Murauski, “Novel polymer as liquid crystal alignment material for plastic substrates,” J. Phys. D 42, 075303 (2009).
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  20. W. A. Shurcliff, Polarized Light (Harvard University, 1962).
  21. K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

2013 (1)

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

2012 (1)

2011 (1)

U. V. Mahilny and A. V. Trofimova, “A new mechanism of stable optical birefringence recording under polarized UV radiation in photocrosslinking polymeric materials,” J. Opt. 13, 105601 (2011).
[CrossRef]

2009 (2)

U. V. Mahilny, A. I. Stankevich, A. A. Muravsky, and A. A. Murauski, “Novel polymer as liquid crystal alignment material for plastic substrates,” J. Phys. D 42, 075303 (2009).

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17, 1817–1830 (2009).
[CrossRef]

2008 (2)

O. Chulwoo and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[CrossRef]

A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).

2007 (2)

H. Ono, A. Hatayama, A. Emoto, and N. Kawatsuki, “Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals,” Opt. Mater. 30, 248–254 (2007).

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
[CrossRef]

2004 (3)

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

J. A. Davis and G. H. Evans, “Polarizing binary diffraction grating beam splitter,” Opt. Lett. 29, 1443–1445 (2004).
[CrossRef]

H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).

2003 (1)

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[CrossRef]

1997 (1)

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[CrossRef]

1984 (1)

Amemiya, K.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Choi, H.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Chulwoo, O.

Cojocariu, C.

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

Conover, B. L.

C. Oh, R. K. Komanduri, B. L. Conover, and M. J. Escuti, “Polarization-independent modulation using standard liquid crystal microdisplays and polymer polarization gratings,” in International Display Research Conference Digest (Society for Information Display, 2008), pp. 298–301.

Davis, J. A.

Emoto, A.

H. Ono, A. Hatayama, A. Emoto, and N. Kawatsuki, “Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals,” Opt. Mater. 30, 248–254 (2007).

H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[CrossRef]

Escuti, M. J.

O. Chulwoo and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
[CrossRef]

C. Oh, R. K. Komanduri, B. L. Conover, and M. J. Escuti, “Polarization-independent modulation using standard liquid crystal microdisplays and polymer polarization gratings,” in International Display Research Conference Digest (Society for Information Display, 2008), pp. 298–301.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Evans, G. H.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Goto, R.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Hasegawa, T.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[CrossRef]

Hatayama, A.

H. Ono, A. Hatayama, A. Emoto, and N. Kawatsuki, “Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals,” Opt. Mater. 30, 248–254 (2007).

Hoke, L.

Ito, Y.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Jeong, S.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Kagawa, H.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Katagiri, T.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Kawatsuki, N.

H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29, 2386–2391 (2012).
[CrossRef]

H. Ono, A. Hatayama, A. Emoto, and N. Kawatsuki, “Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals,” Opt. Mater. 30, 248–254 (2007).

H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[CrossRef]

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[CrossRef]

Kazak, A. A.

A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).

Kee, H. C.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Kim, J.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Kim, Y.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Kimball, B.

Komanduri, R. K.

C. Oh, R. K. Komanduri, B. L. Conover, and M. J. Escuti, “Polarization-independent modulation using standard liquid crystal microdisplays and polymer polarization gratings,” in International Display Research Conference Digest (Society for Information Display, 2008), pp. 298–301.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Kuwabara, M.

H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).

Lee, S.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Mahilny, U.

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

Mahilny, U. V.

U. V. Mahilny and A. V. Trofimova, “A new mechanism of stable optical birefringence recording under polarized UV radiation in photocrosslinking polymeric materials,” J. Opt. 13, 105601 (2011).
[CrossRef]

U. V. Mahilny, A. I. Stankevich, A. A. Muravsky, and A. A. Murauski, “Novel polymer as liquid crystal alignment material for plastic substrates,” J. Phys. D 42, 075303 (2009).

A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).

Matsui, S.

Matsumoto, A.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Melnikova, E. A.

A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).

Murauski, A.

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

Murauski, A. A.

U. V. Mahilny, A. I. Stankevich, A. A. Muravsky, and A. A. Murauski, “Novel polymer as liquid crystal alignment material for plastic substrates,” J. Phys. D 42, 075303 (2009).

Muravsky, A.

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

Muravsky, A. A.

U. V. Mahilny, A. I. Stankevich, A. A. Muravsky, and A. A. Murauski, “Novel polymer as liquid crystal alignment material for plastic substrates,” J. Phys. D 42, 075303 (2009).

Nakao, M.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Nersisyan, S. R.

Nikolova, L.

Nishi, M.

Noda, K.

Oh, C.

C. Oh, R. K. Komanduri, B. L. Conover, and M. J. Escuti, “Polarization-independent modulation using standard liquid crystal microdisplays and polymer polarization gratings,” in International Display Research Conference Digest (Society for Information Display, 2008), pp. 298–301.

Ohmuro, K.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Okada, M.

Ono, H.

H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29, 2386–2391 (2012).
[CrossRef]

H. Ono, A. Hatayama, A. Emoto, and N. Kawatsuki, “Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals,” Opt. Mater. 30, 248–254 (2007).

H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[CrossRef]

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[CrossRef]

Otani, T.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Pan, X.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
[CrossRef]

Ramanujam, P. S.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Rochon, P.

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

Sangen, O.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[CrossRef]

Sasaki, T.

Seo, E.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard University, 1962).

Stankevich, A.

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

Stankevich, A. I.

U. V. Mahilny, A. I. Stankevich, A. A. Muravsky, and A. A. Murauski, “Novel polymer as liquid crystal alignment material for plastic substrates,” J. Phys. D 42, 075303 (2009).

A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).

Steeves, D. M.

Suga, Y.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Tabiryan, N. V.

Takada, K.

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

Takahashi, F.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[CrossRef]

Takatsuka, H.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[CrossRef]

Todorov, T.

Tolstik, A.

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

Tolstik, A. L.

A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).

Tomova, N.

Trofimova, A.

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

Trofimova, A. V.

U. V. Mahilny and A. V. Trofimova, “A new mechanism of stable optical birefringence recording under polarized UV radiation in photocrosslinking polymeric materials,” J. Opt. 13, 105601 (2011).
[CrossRef]

Uchida, E.

H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).

Wang, C.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
[CrossRef]

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
[CrossRef]

Xu, H.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
[CrossRef]

Yamamoto, T.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[CrossRef]

Zhang, X.

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

H. Ono, A. Emoto, N. Kawatsuki, E. Uchida, and M. Kuwabara, “New fabrication method for anisotropic grating formed in photocrosslinkable polymer liquid crystals,” Appl. Phys. A 79, 1725–1727 (2004).

Appl. Phys. B (1)

X. Pan, C. Wang, H. Xu, C. Wang, and X. Zhang, “Polarization holographic gratings in an azobenzene side-chain liquid-crystalline polymer,” Appl. Phys. B 86, 693–697 (2007).
[CrossRef]

J. Appl. Phys. (1)

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298–1303 (2003).
[CrossRef]

J. Opt. (1)

U. V. Mahilny and A. V. Trofimova, “A new mechanism of stable optical birefringence recording under polarized UV radiation in photocrosslinking polymeric materials,” J. Opt. 13, 105601 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

U. V. Mahilny, A. I. Stankevich, A. A. Muravsky, and A. A. Murauski, “Novel polymer as liquid crystal alignment material for plastic substrates,” J. Phys. D 42, 075303 (2009).

Macromolecules (1)

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[CrossRef]

Nonlinear Phenom. Complex Syst. (1)

U. Mahilny, A. Trofimova, A. Stankevich, A. Tolstik, A. Murauski, and A. Muravsky, “New photocrosslinking polymeric materials for liquid crystal photoalignment,” Nonlinear Phenom. Complex Syst. 16, 79–85 (2013).

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

H. Ono, A. Hatayama, A. Emoto, and N. Kawatsuki, “Migration induced reorientation and anisotropic grating formation in photoreactive polymer liquid crystals,” Opt. Mater. 30, 248–254 (2007).

Pure Appl. Chem. (1)

C. Cojocariu and P. Rochon, “Light-induced motions in azobenzene-containing polymers,” Pure Appl. Chem. 76, 1479–1497 (2004).
[CrossRef]

Tech. Phys. Lett. (1)

A. A. Kazak, E. A. Melnikova, A. L. Tolstik, U. V. Mahilny, and A. I. Stankevich, “Controlled diffraction liquid-crystal structures with a photoalignment polymer,” Tech. Phys. Lett. 34, 861–864 (2008).

Other (6)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

W. A. Shurcliff, Polarized Light (Harvard University, 1962).

K. Takada, T. Otani, M. Nakao, K. Ohmuro, K. Amemiya, R. Goto, A. Matsumoto, T. Katagiri, H. Kagawa, Y. Suga, and Y. Ito, “Novel film patterned retarder for improving viewing angle properties in 3D-LCDs,” in 20th International Display Workshops Digest (Society for Information Display, 2013), pp. 522–524.

C. Oh, R. K. Komanduri, B. L. Conover, and M. J. Escuti, “Polarization-independent modulation using standard liquid crystal microdisplays and polymer polarization gratings,” in International Display Research Conference Digest (Society for Information Display, 2008), pp. 298–301.

E. Seo, H. C. Kee, Y. Kim, S. Jeong, H. Choi, S. Lee, J. Kim, R. K. Komanduri, and M. J. Escuti, “Polarization conversion system using a polymer polarization grating,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2011), pp. 540–543.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Dependence of RM layer birefringence on alignment layer irradiation time.

Fig. 2.
Fig. 2.

Preparation of patterned aligning layers: (a) polarized UV exposure through photomask; (b) uniform polarized UV exposure; and (c) aligning surface (arrows indicate alignment directions).

Fig. 3.
Fig. 3.

Schematic diagram of anisotropic diffraction measurements.

Fig. 4.
Fig. 4.

Light intensity angular distribution in the grating diffraction pattern (d=40μm).

Fig. 5.
Fig. 5.

Experimental polarization diagrams of (a) incident beam, (b) zeroth, (c) +1st, and (d) 1st-order diffracted beams.

Fig. 6.
Fig. 6.

Calculated polarization diagrams of (a) incident beam, (b) zeroth, (c) +1st, and (d) 1st-order diffracted beams.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ηi=Imaxi/Imax0,
Em=1dd/2d/2τ(x)exp(i2πdmx)dxτ(x)=exp[iΔφ(x)],
Δφ(x)={2πλln1,x[d2;0]2πλln2,x[0;d2].
Ein=Ein+45+Ein45(10)=12(11)+12(11).
Tgrat=(exp[iΔφ]00exp[iΔφ]).
{Ein+45:n1=δnn2=δnEin45:n1=δnn2=δn,
Tgrat+45(x)={(exp[i2πλδnl]00exp[i2πλδnl]),x[d2;0](exp[i2πλδnl]00exp[i2πλδnl]),x[0;d2],
Tgrat45(x)={(exp[i2πλδnl]00exp[i2πλδnl]),x[d2;0](exp[i2πλδnl]00exp[i2πλδnl]),x[0;d2].
Tanal(ρ)=(cos2ρsinρcosρsinρcosρsin2ρ).
Eout+45,45(m)=[1dd/2d/2Tgrat+45,45(x)exp(i2πdmx)dx]×Ein+45,45.
Eout=Eout+45+Eout45.

Metrics