Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Power analysis of multilayer structures composed of conventional materials and bi-anisotropic metamaterial slabs

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we analyze wave propagation properties (transmitted, reflected, and absorbed powers) of composite multilayer structures consisting of bi-anisotropic metamaterial (MM) slabs and conventional isotropic materials. We also separately investigate the propagation properties of bi-anisotropic MM slabs and conventional materials to better interpret the results. We consider two different bi-anisotropic MM slab structures composed of only split-ring-resonators (SRRs) and composing SRRs and a rod. In the analysis, we apply the well-known transfer matrix method to obtain transmitted, reflected, and absorbed powers of the composite structures. From the analysis, we note the following three important results. First, while the transmitted powers from forward and backward directions of the multilayer structure are identical (reciprocal feature), reflected (and absorbed) powers from forward and backward directions of the multilayer structure are different. This difference arises from reflection asymmetric nature of the bi-anisotropic MM slabs. Second, whereas the conventional material loss influences propagation characteristics aside resonance frequencies of bi-anisotropic MM slabs, bi-anisotropic MM loss worsens propagation properties of the multilayer structure at resonance frequencies of these slabs. Third, variations in (or determination of) electromagnetic properties of low-loss thin conventional materials in between two bi-anisotropic MM slabs can be realized at frequencies in which conventional materials demonstrate thickness-resonance effect.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials

Ugur Cem Hasar, Joaquim J. Barroso, Cumali Sabah, Yunus Kaya, and Mehmet Ertugrul
J. Opt. Soc. Am. B 30(4) 1058-1068 (2013)

Light interaction with multilayer arbitrary anisotropic structure: an explicit analytical solution and application for subwavelength imaging

Yasaman Kiasat, Zsolt Szabo, Xudong Chen, and Erping Li
J. Opt. Soc. Am. B 31(3) 648-655 (2014)

Differential uncertainty analysis for evaluating the accuracy of S-parameter retrieval methods for electromagnetic properties of metamaterial slabs

Ugur Cem Hasar, Joaquim J. Barroso, Cumali Sabah, Yunus Kaya, and Mehmet Ertugrul
Opt. Express 20(27) 29002-29022 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved