Abstract

In this paper, we analyze wave propagation properties (transmitted, reflected, and absorbed powers) of composite multilayer structures consisting of bi-anisotropic metamaterial (MM) slabs and conventional isotropic materials. We also separately investigate the propagation properties of bi-anisotropic MM slabs and conventional materials to better interpret the results. We consider two different bi-anisotropic MM slab structures composed of only split-ring-resonators (SRRs) and composing SRRs and a rod. In the analysis, we apply the well-known transfer matrix method to obtain transmitted, reflected, and absorbed powers of the composite structures. From the analysis, we note the following three important results. First, while the transmitted powers from forward and backward directions of the multilayer structure are identical (reciprocal feature), reflected (and absorbed) powers from forward and backward directions of the multilayer structure are different. This difference arises from reflection asymmetric nature of the bi-anisotropic MM slabs. Second, whereas the conventional material loss influences propagation characteristics aside resonance frequencies of bi-anisotropic MM slabs, bi-anisotropic MM loss worsens propagation properties of the multilayer structure at resonance frequencies of these slabs. Third, variations in (or determination of) electromagnetic properties of low-loss thin conventional materials in between two bi-anisotropic MM slabs can be realized at frequencies in which conventional materials demonstrate thickness-resonance effect.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref]
  4. J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref]
  5. K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
    [Crossref]
  6. C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett. 53, 2255–2258 (2011).
    [Crossref]
  7. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
    [Crossref]
  8. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
    [Crossref]
  9. H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).
  10. L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
    [Crossref]
  11. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
    [Crossref]
  12. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
    [Crossref]
  13. H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
    [Crossref]
  14. D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  15. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [Crossref]
  16. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
    [Crossref]
  17. R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
    [Crossref]
  18. T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
    [Crossref]
  19. X. Chen, T. M. Grzegorczyk, and J. A. Kong, “Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium,” Prog. Electromagn. Res. 60, 1–18 (2006).
    [Crossref]
  20. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
    [Crossref]
  21. Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
    [Crossref]
  22. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
    [Crossref]
  23. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
    [Crossref]
  24. U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res. 112, 109–124 (2011).
  25. O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011).
    [Crossref]
  26. U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013).
    [Crossref]
  27. C. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, “Study of asymmetric multilayered structures by means of nonreciprocity in phases,” J. Opt. B 6, 555–562 (2004).
    [Crossref]
  28. A. H. Gevorgyan, “Nonreciprocal waves in absorbing multilayer systems,” Tech. Phys. Lett. 29, 819–823 (2003).
    [Crossref]
  29. U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
    [Crossref]
  30. U. C. Hasar and A. Cansiz, “Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements,” Microw. Opt. Technol. Lett. 52, 75–78 (2010).
    [Crossref]
  31. U. C. Hasar, C. R. Westgate, and M. Ertgurul, “Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements,” IEEE Microw. Wirel. Compon. Lett. 19, 419–421 (2009).
    [Crossref]
  32. U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56, 2129–2135 (2008).
    [Crossref]
  33. V. Tuz, M. Vidil, and S. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
    [Crossref]
  34. T. J. Fal and R. E. Camley, “Non-reciprocal devices using attenuated total reflection and thin film magnetic layered structures,” J. Appl. Phys. 110, 053912 (2011).
    [Crossref]
  35. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
    [Crossref]
  36. S. A. Tretyakov and A. A. Sochava, “Novel uniaxial bianisotropoic materials: reflection and transmission in planar structures,” Prog. Electromagn. Res. 9, 157–179 (1994).
  37. M. Norgren and S. He, “General scheme for electromagnetic reflection and transmission for composite structures of complex materials,” IEE Proc. Microw. Antennas Propag. 142, 52–56 (1995).
    [Crossref]
  38. D. Y. Khaliullin and S. A. Tretyakov, “Reflection and transmission coefficients for thin bianisotropic layers,” IEE Proc. Microw. Antennas Propag. 145, 163–168 (1998).
    [Crossref]
  39. S. Rikte, G. Kristensson, and M. Andersson, “Propagation in bianisotropic media—reflection and transmission,” IEE Proc. Microw. Antennas Propag. 148, 29–36 (2001).
    [Crossref]
  40. C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
    [Crossref]
  41. C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res. 91, 349–364 (2009).
    [Crossref]
  42. C. Sabah, “Effects of loss factor on plane wave propagation through a left-handed material slab,” Acta Phys. Pol., A 113, 1589–1597 (2008).
  43. L. Liu, C. Hu, Z. Zhao, and X. Luo, “Multi-passband tunnelling effect in multilayered epsilon near-zero metamaterials,” Opt. Express 17, 12183–12188 (2009).
    [Crossref]
  44. M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wirel. Propag. Lett. 2, 103–106 (2003).
    [Crossref]
  45. U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of loss silicon and fabrication tolerance on spectral properties of porous silicon Fabry–Perot cavities in sensing applications,” Opt. Express 20, 22208–22223 (2012).
    [Crossref]
  46. F.-J. Hsieh and W.-C. Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models,” J. Appl. Phys. 112, 064907 (2012).
    [Crossref]
  47. T. Karacali, U. C. Hasar, I. Y. Ozbek, E. A. Oral, and H. Efeoglu, “Novel design of porous silicon based sensor for reliable and feasible chemical gas vapor detection,” J. Lightwave Technol. 31, 295–305 (2013).
    [Crossref]
  48. O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE Trans. Antennas Propag. 51, 2619–2625 (2003).
    [Crossref]
  49. U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
    [Crossref]
  50. U. C. Hasar, “Reference-plane invariant, broadband, and stable constitutive parameters determination of low-loss materials from transmission-reflection measurements using variable parameters,” J. Electromagn. Waves Appl. 26, 44–53 (2012).
    [Crossref]
  51. U. C. Hasar, “A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials,” IEEE Trans. Microw. Theory Tech. 57, 1595–1601 (2009).
    [Crossref]
  52. H. J. Pain, The Physics of Vibrations and Waves (Wiley, 2008).
  53. S. Humphrey, “Direct calculation of the optical constants for a thin film using a midpoint envelope,” Appl. Opt. 46, 4660–4666 (2007).
    [Crossref]
  54. U. C. Hasar, “Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials,” Meas. Sci. Technol. 19, 055706 (2008).
    [Crossref]
  55. S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).
  56. E. Ekmekci and G. Turhan-Sayan, “Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate,” Appl. Phys. A 110, 189–197 (2013).
    [Crossref]
  57. Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostruct. Fundam. Appl. 10, 329–336 (2012).
    [Crossref]
  58. K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008).
    [Crossref]

2014 (1)

U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
[Crossref]

2013 (5)

U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013).
[Crossref]

L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
[Crossref]

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

T. Karacali, U. C. Hasar, I. Y. Ozbek, E. A. Oral, and H. Efeoglu, “Novel design of porous silicon based sensor for reliable and feasible chemical gas vapor detection,” J. Lightwave Technol. 31, 295–305 (2013).
[Crossref]

E. Ekmekci and G. Turhan-Sayan, “Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate,” Appl. Phys. A 110, 189–197 (2013).
[Crossref]

2012 (5)

Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostruct. Fundam. Appl. 10, 329–336 (2012).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

U. C. Hasar, “Reference-plane invariant, broadband, and stable constitutive parameters determination of low-loss materials from transmission-reflection measurements using variable parameters,” J. Electromagn. Waves Appl. 26, 44–53 (2012).
[Crossref]

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of loss silicon and fabrication tolerance on spectral properties of porous silicon Fabry–Perot cavities in sensing applications,” Opt. Express 20, 22208–22223 (2012).
[Crossref]

F.-J. Hsieh and W.-C. Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models,” J. Appl. Phys. 112, 064907 (2012).
[Crossref]

2011 (5)

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett. 53, 2255–2258 (2011).
[Crossref]

T. J. Fal and R. E. Camley, “Non-reciprocal devices using attenuated total reflection and thin film magnetic layered structures,” J. Appl. Phys. 110, 053912 (2011).
[Crossref]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res. 112, 109–124 (2011).

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011).
[Crossref]

2010 (2)

U. C. Hasar and A. Cansiz, “Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements,” Microw. Opt. Technol. Lett. 52, 75–78 (2010).
[Crossref]

V. Tuz, M. Vidil, and S. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[Crossref]

2009 (7)

U. C. Hasar, C. R. Westgate, and M. Ertgurul, “Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements,” IEEE Microw. Wirel. Compon. Lett. 19, 419–421 (2009).
[Crossref]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res. 91, 349–364 (2009).
[Crossref]

L. Liu, C. Hu, Z. Zhao, and X. Luo, “Multi-passband tunnelling effect in multilayered epsilon near-zero metamaterials,” Opt. Express 17, 12183–12188 (2009).
[Crossref]

U. C. Hasar, “A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials,” IEEE Trans. Microw. Theory Tech. 57, 1595–1601 (2009).
[Crossref]

2008 (4)

K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008).
[Crossref]

U. C. Hasar, “Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials,” Meas. Sci. Technol. 19, 055706 (2008).
[Crossref]

C. Sabah, “Effects of loss factor on plane wave propagation through a left-handed material slab,” Acta Phys. Pol., A 113, 1589–1597 (2008).

U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56, 2129–2135 (2008).
[Crossref]

2007 (4)

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
[Crossref]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

S. Humphrey, “Direct calculation of the optical constants for a thin film using a midpoint envelope,” Appl. Opt. 46, 4660–4666 (2007).
[Crossref]

2006 (4)

J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
[Crossref]

H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
[Crossref]

X. Chen, T. M. Grzegorczyk, and J. A. Kong, “Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium,” Prog. Electromagn. Res. 60, 1–18 (2006).
[Crossref]

2005 (3)

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

2004 (5)

C. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, “Study of asymmetric multilayered structures by means of nonreciprocity in phases,” J. Opt. B 6, 555–562 (2004).
[Crossref]

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
[Crossref]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

2003 (3)

A. H. Gevorgyan, “Nonreciprocal waves in absorbing multilayer systems,” Tech. Phys. Lett. 29, 819–823 (2003).
[Crossref]

M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wirel. Propag. Lett. 2, 103–106 (2003).
[Crossref]

O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE Trans. Antennas Propag. 51, 2619–2625 (2003).
[Crossref]

2002 (2)

D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

S. Rikte, G. Kristensson, and M. Andersson, “Propagation in bianisotropic media—reflection and transmission,” IEE Proc. Microw. Antennas Propag. 148, 29–36 (2001).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

1998 (1)

D. Y. Khaliullin and S. A. Tretyakov, “Reflection and transmission coefficients for thin bianisotropic layers,” IEE Proc. Microw. Antennas Propag. 145, 163–168 (1998).
[Crossref]

1995 (1)

M. Norgren and S. He, “General scheme for electromagnetic reflection and transmission for composite structures of complex materials,” IEE Proc. Microw. Antennas Propag. 142, 52–56 (1995).
[Crossref]

1994 (1)

S. A. Tretyakov and A. A. Sochava, “Novel uniaxial bianisotropoic materials: reflection and transmission in planar structures,” Prog. Electromagn. Res. 9, 157–179 (1994).

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Agarwal, G. S.

C. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, “Study of asymmetric multilayered structures by means of nonreciprocity in phases,” J. Opt. B 6, 555–562 (2004).
[Crossref]

Andersson, M.

S. Rikte, G. Kristensson, and M. Andersson, “Propagation in bianisotropic media—reflection and transmission,” IEE Proc. Microw. Antennas Propag. 148, 29–36 (2001).
[Crossref]

Antoniades, M. A.

M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wirel. Propag. Lett. 2, 103–106 (2003).
[Crossref]

Aydin, K.

Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostruct. Fundam. Appl. 10, 329–336 (2012).
[Crossref]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[Crossref]

K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008).
[Crossref]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
[Crossref]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref]

Aydin, T.

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

Barroso, J. J.

U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res. 112, 109–124 (2011).

Bilge, S.

K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008).
[Crossref]

Bute, M.

U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
[Crossref]

Camley, R. E.

T. J. Fal and R. E. Camley, “Non-reciprocal devices using attenuated total reflection and thin film magnetic layered structures,” J. Appl. Phys. 110, 053912 (2011).
[Crossref]

Cansiz, A.

U. C. Hasar and A. Cansiz, “Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements,” Microw. Opt. Technol. Lett. 52, 75–78 (2010).
[Crossref]

Chen, H.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).

H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
[Crossref]

Chen, J.

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

Chen, L.

L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, and J. A. Kong, “Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium,” Prog. Electromagn. Res. 60, 1–18 (2006).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Dal, D.

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

Delihacioglu, K.

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

Dincer, F.

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

Dong, Z.-G.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Efeoglu, H.

Ekmekci, E.

E. Ekmekci and G. Turhan-Sayan, “Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate,” Appl. Phys. A 110, 189–197 (2013).
[Crossref]

Eleftheriades, G. V.

O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE Trans. Antennas Propag. 51, 2619–2625 (2003).
[Crossref]

M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wirel. Propag. Lett. 2, 103–106 (2003).
[Crossref]

Ertgurul, M.

U. C. Hasar, C. R. Westgate, and M. Ertgurul, “Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements,” IEEE Microw. Wirel. Compon. Lett. 19, 419–421 (2009).
[Crossref]

Ertugrul, M.

U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013).
[Crossref]

Etrich, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Fal, T. J.

T. J. Fal and R. E. Camley, “Non-reciprocal devices using attenuated total reflection and thin film magnetic layered structures,” J. Appl. Phys. 110, 053912 (2011).
[Crossref]

Gevorgyan, A. H.

A. H. Gevorgyan, “Nonreciprocal waves in absorbing multilayer systems,” Tech. Phys. Lett. 29, 819–823 (2003).
[Crossref]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, and J. A. Kong, “Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium,” Prog. Electromagn. Res. 60, 1–18 (2006).
[Crossref]

H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
[Crossref]

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Gupta, S. D.

C. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, “Study of asymmetric multilayered structures by means of nonreciprocity in phases,” J. Opt. B 6, 555–562 (2004).
[Crossref]

Guven, K.

Hasar, U. C.

U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
[Crossref]

T. Karacali, U. C. Hasar, I. Y. Ozbek, E. A. Oral, and H. Efeoglu, “Novel design of porous silicon based sensor for reliable and feasible chemical gas vapor detection,” J. Lightwave Technol. 31, 295–305 (2013).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013).
[Crossref]

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of loss silicon and fabrication tolerance on spectral properties of porous silicon Fabry–Perot cavities in sensing applications,” Opt. Express 20, 22208–22223 (2012).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

U. C. Hasar, “Reference-plane invariant, broadband, and stable constitutive parameters determination of low-loss materials from transmission-reflection measurements using variable parameters,” J. Electromagn. Waves Appl. 26, 44–53 (2012).
[Crossref]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res. 112, 109–124 (2011).

U. C. Hasar and A. Cansiz, “Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements,” Microw. Opt. Technol. Lett. 52, 75–78 (2010).
[Crossref]

U. C. Hasar, C. R. Westgate, and M. Ertgurul, “Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements,” IEEE Microw. Wirel. Compon. Lett. 19, 419–421 (2009).
[Crossref]

U. C. Hasar, “A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials,” IEEE Trans. Microw. Theory Tech. 57, 1595–1601 (2009).
[Crossref]

U. C. Hasar, “Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials,” Meas. Sci. Technol. 19, 055706 (2008).
[Crossref]

U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56, 2129–2135 (2008).
[Crossref]

Haungfu, J.

H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
[Crossref]

He, S.

M. Norgren and S. He, “General scheme for electromagnetic reflection and transmission for composite structures of complex materials,” IEE Proc. Microw. Antennas Propag. 142, 52–56 (1995).
[Crossref]

Helgert, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Hsieh, F.-J.

F.-J. Hsieh and W.-C. Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models,” J. Appl. Phys. 112, 064907 (2012).
[Crossref]

Hu, C.

Huang, L.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).

Hudlicka, M.

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
[Crossref]

Humphrey, S.

Kadlec, C.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

Kadlec, F.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref]

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Karaaslan, M.

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

Karacali, T.

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kaya, Y.

U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

Khaliullin, D. Y.

D. Y. Khaliullin and S. A. Tretyakov, “Reflection and transmission coefficients for thin bianisotropic layers,” IEE Proc. Microw. Antennas Propag. 145, 163–168 (1998).
[Crossref]

Kley, E.-B.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Kong, J. A.

H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
[Crossref]

X. Chen, T. M. Grzegorczyk, and J. A. Kong, “Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium,” Prog. Electromagn. Res. 60, 1–18 (2006).
[Crossref]

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kristensson, G.

S. Rikte, G. Kristensson, and M. Andersson, “Propagation in bianisotropic media—reflection and transmission,” IEE Proc. Microw. Antennas Propag. 148, 29–36 (2001).
[Crossref]

Kuzel, P.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

Lederer, F.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Lei, S.-Y.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Lei, Z.

L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
[Crossref]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Li, Q.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Li, T.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Li, Z.

Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostruct. Fundam. Appl. 10, 329–336 (2012).
[Crossref]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[Crossref]

K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008).
[Crossref]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
[Crossref]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Liu, H.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Liu, L.

Luo, X.

Luukkonen, O.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011).
[Crossref]

Markos, P.

D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Marques, R.

R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Maslovski, S. I.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011).
[Crossref]

Medina, F.

R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Menzel, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Mojahedi, M.

O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE Trans. Antennas Propag. 51, 2619–2625 (2003).
[Crossref]

Mounaix, P.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

Nemec, H.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

Norgren, M.

M. Norgren and S. He, “General scheme for electromagnetic reflection and transmission for composite structures of complex materials,” IEE Proc. Microw. Antennas Propag. 142, 52–56 (1995).
[Crossref]

Oral, E. A.

Ozbay, E.

Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostruct. Fundam. Appl. 10, 329–336 (2012).
[Crossref]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[Crossref]

K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008).
[Crossref]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
[Crossref]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref]

Ozbek, I. Y.

Pacheco, J.

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Pain, H. J.

H. J. Pain, The Physics of Vibrations and Waves (Wiley, 2008).

Pendry, J. B.

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
[Crossref]

J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

Pertsch, T.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
[Crossref]

Prosvirnin, S.

V. Tuz, M. Vidil, and S. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[Crossref]

Rafii-El-Idrissi, R.

R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

Ran, L.

H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
[Crossref]

Rao, C. S. C. M.

C. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, “Study of asymmetric multilayered structures by means of nonreciprocity in phases,” J. Opt. B 6, 555–562 (2004).
[Crossref]

Rikte, S.

S. Rikte, G. Kristensson, and M. Andersson, “Propagation in bianisotropic media—reflection and transmission,” IEE Proc. Microw. Antennas Propag. 148, 29–36 (2001).
[Crossref]

Rockstuhl, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Sabah, C.

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013).
[Crossref]

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett. 53, 2255–2258 (2011).
[Crossref]

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res. 91, 349–364 (2009).
[Crossref]

C. Sabah, “Effects of loss factor on plane wave propagation through a left-handed material slab,” Acta Phys. Pol., A 113, 1589–1597 (2008).

Schultz, S.

D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Schuring, D.

J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Shi, X.

L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
[Crossref]

Siddiqui, O. F.

O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE Trans. Antennas Propag. 51, 2619–2625 (2003).
[Crossref]

Smith, D. R.

J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Smith, D. S.

D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Sochava, A. A.

S. A. Tretyakov and A. A. Sochava, “Novel uniaxial bianisotropoic materials: reflection and transmission in planar structures,” Prog. Electromagn. Res. 9, 157–179 (1994).

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623–2625 (2004).
[Crossref]

D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Tastan, H. T.

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

Tretyakov, S. A.

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011).
[Crossref]

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
[Crossref]

D. Y. Khaliullin and S. A. Tretyakov, “Reflection and transmission coefficients for thin bianisotropic layers,” IEE Proc. Microw. Antennas Propag. 145, 163–168 (1998).
[Crossref]

S. A. Tretyakov and A. A. Sochava, “Novel uniaxial bianisotropoic materials: reflection and transmission in planar structures,” Prog. Electromagn. Res. 9, 157–179 (1994).

Tunnermann, A.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

Turhan-Sayan, G.

E. Ekmekci and G. Turhan-Sayan, “Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate,” Appl. Phys. A 110, 189–197 (2013).
[Crossref]

Tuz, V.

V. Tuz, M. Vidil, and S. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[Crossref]

Uckun, S.

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res. 91, 349–364 (2009).
[Crossref]

Unal, E.

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Vidil, M.

V. Tuz, M. Vidil, and S. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Wang, F. M.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Wang, W.-C.

F.-J. Hsieh and W.-C. Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models,” J. Appl. Phys. 112, 064907 (2012).
[Crossref]

Westgate, C. R.

U. C. Hasar, C. R. Westgate, and M. Ertgurul, “Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements,” IEEE Microw. Wirel. Compon. Lett. 19, 419–421 (2009).
[Crossref]

Wu, B.-I.

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Xu, M.-X.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Xu, S.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).

Yahiaoui, R.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

Yang, L.

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).

Yang, R.

L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
[Crossref]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Zhang, J.

L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
[Crossref]

Zhang, L.

Zhao, Q.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Zhao, Z.

Zhou, J.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

Zhu, S. N.

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

Acta Phys. Pol., A (1)

C. Sabah, “Effects of loss factor on plane wave propagation through a left-handed material slab,” Acta Phys. Pol., A 113, 1589–1597 (2008).

Appl. Opt. (1)

Appl. Phys. A (1)

E. Ekmekci and G. Turhan-Sayan, “Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate,” Appl. Phys. A 110, 189–197 (2013).
[Crossref]

Appl. Phys. Lett. (2)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

IEE Proc. Microw. Antennas Propag. (3)

M. Norgren and S. He, “General scheme for electromagnetic reflection and transmission for composite structures of complex materials,” IEE Proc. Microw. Antennas Propag. 142, 52–56 (1995).
[Crossref]

D. Y. Khaliullin and S. A. Tretyakov, “Reflection and transmission coefficients for thin bianisotropic layers,” IEE Proc. Microw. Antennas Propag. 145, 163–168 (1998).
[Crossref]

S. Rikte, G. Kristensson, and M. Andersson, “Propagation in bianisotropic media—reflection and transmission,” IEE Proc. Microw. Antennas Propag. 148, 29–36 (2001).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011).
[Crossref]

M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wirel. Propag. Lett. 2, 103–106 (2003).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

U. C. Hasar, C. R. Westgate, and M. Ertgurul, “Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements,” IEEE Microw. Wirel. Compon. Lett. 19, 419–421 (2009).
[Crossref]

IEEE Trans. Antennas Propag. (1)

O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE Trans. Antennas Propag. 51, 2619–2625 (2003).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

U. C. Hasar, “A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials,” IEEE Trans. Microw. Theory Tech. 57, 1595–1601 (2009).
[Crossref]

U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56, 2129–2135 (2008).
[Crossref]

J. Appl. Phys. (3)

H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006).
[Crossref]

F.-J. Hsieh and W.-C. Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models,” J. Appl. Phys. 112, 064907 (2012).
[Crossref]

T. J. Fal and R. E. Camley, “Non-reciprocal devices using attenuated total reflection and thin film magnetic layered structures,” J. Appl. Phys. 110, 053912 (2011).
[Crossref]

J. Electromagn. Waves Appl. (1)

U. C. Hasar, “Reference-plane invariant, broadband, and stable constitutive parameters determination of low-loss materials from transmission-reflection measurements using variable parameters,” J. Electromagn. Waves Appl. 26, 44–53 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

V. Tuz, M. Vidil, and S. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[Crossref]

J. Opt. B (1)

C. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, “Study of asymmetric multilayered structures by means of nonreciprocity in phases,” J. Opt. B 6, 555–562 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

U. C. Hasar, “Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials,” Meas. Sci. Technol. 19, 055706 (2008).
[Crossref]

Microw. Opt. Technol. Lett. (2)

C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett. 53, 2255–2258 (2011).
[Crossref]

U. C. Hasar and A. Cansiz, “Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements,” Microw. Opt. Technol. Lett. 52, 75–78 (2010).
[Crossref]

New J. Phys. (1)

K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photon. Nanostruct. Fundam. Appl. (2)

Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostruct. Fundam. Appl. 10, 329–336 (2012).
[Crossref]

K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008).
[Crossref]

Phys. Rev. B (5)

Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007).
[Crossref]

R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002).
[Crossref]

D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[Crossref]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).

Phys. Rev. E (4)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref]

Prog. Electromagn. Res. (9)

L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013).
[Crossref]

T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, and J. A. Kong, “Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium,” Prog. Electromagn. Res. 60, 1–18 (2006).
[Crossref]

U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res. 112, 109–124 (2011).

C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013).
[Crossref]

C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res. 91, 349–364 (2009).
[Crossref]

S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).

S. A. Tretyakov and A. A. Sochava, “Novel uniaxial bianisotropoic materials: reflection and transmission in planar structures,” Prog. Electromagn. Res. 9, 157–179 (1994).

U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012).
[Crossref]

Rep. Prog. Phys. (1)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014).
[Crossref]

Science (2)

J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Tech. Phys. Lett. (1)

A. H. Gevorgyan, “Nonreciprocal waves in absorbing multilayer systems,” Tech. Phys. Lett. 29, 819–823 (2003).
[Crossref]

Other (1)

H. J. Pain, The Physics of Vibrations and Waves (Wiley, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cell and field configurations of the analyzed bi-anisotropic MM slabs possessing (a) two square-shaped SRRs and (b) square-shaped SRRs and a rod for propagation analysis of multilayered structures.

Fig. 2.
Fig. 2.

(a) Magnitudes and (b) phases over 1–20 GHz of simulated S-parameters of the bi-anisotropic SRR MM slab in Fig. 1(a).

Fig. 3.
Fig. 3.

Retrieved (a) εzz and μyy, (b) ξ0 and n, and (c) z+ and z of the bi-anisotropic SRR MM slab in Fig. 1(a).

Fig. 4.
Fig. 4.

Retrieved (a) εzz and μyy, (b) ξ0 and n, and (c) z+ and z of the bi-anisotropic composite MM slab in Fig. 1(b).

Fig. 5.
Fig. 5.

Dependence of F(εzz,μyy,ξ0) in Eq. (4) for (a) the bi-anisotropic SRR MM slab in Fig. 1(a), and (b) the bi-anisotropic composite MM slab in Fig. 1(b).

Fig. 6.
Fig. 6.

Typical multilayer structure composed of successive combinations of bi-anisotropic MM slabs and conventional materials (the first and last layers are bi-anisotropic MM slabs).

Fig. 7.
Fig. 7.

Dependencies of group velocities for (a) the SRR bi-anisotropic MM slab and (b) the composite bi-anisotropic MM slab.

Fig. 8.
Fig. 8.

Dependencies of normalized (a) transmitted power, (b) and (c) reflected powers, (d) and (e) absorbed powers of only the left (SRR) bi-anisotropic MM slab, only the right (composite) bi-anisotropic MM slab, only the conventional material (conven), and the whole (three-layer composite) structure, and (f) Re{T2} of the conventional material. Assumed parameters are L1=L3=5.25mm, L2=10.0mm, and εr=6.0+i0.0 for the conventional material. [The superscripts (f) and (b) designate the power obtained from forward and backward directions of the analyzed medium/structure, respectively.]

Fig. 9.
Fig. 9.

Dependencies of normalized (a) transmitted power, (b) and (c) reflected powers, (d) and (e) absorbed powers of only the conventional material (conven) and the whole (three-layer composite) structure, and (f) Re{T2} of the conventional material. Assumed parameters are L1=L3=5.25mm, L2=20.0mm, εr=6.0, εr=0.0 (dependencies with solid lines), and εr=1.0 (dependencies with dashed lines) for the conventional material. [The superscripts (f) and (b) designate the power obtained from forward and backward directions of the analyzed medium/structure, respectively.]

Fig. 10.
Fig. 10.

Closer views of the normalized transmitted powers of only the left (SRR) bi-anisotropic MM slab, only the right (composite) bi-anisotropic MM slab, and the whole (three-layer composite) structure over f=3.505.0GHz and f=10.012.5GHz. [The superscripts (f) and (b) designate the power obtained from forward and backward directions of the analyzed medium/structure, respectively.]

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

D¯=ε¯¯·E¯+ς¯¯·H¯,B¯=μ¯¯·H¯+ζ¯¯·E¯,
ε¯¯=ε0[εxx000εyy000εzz],μ¯¯=μ0[μxx000μyy000μzz],
ς¯¯=1c[0000000iξ00],ζ¯¯=1c[00000+iξ0000].
F(εzz,μyy,ξ0)=εzzμyy+εzzμyy2ξ0ξ0<0,
[MT]=[m11Tm12Tm21Tm22T]=s=1N[Ms]=s=1N[m11sm12sm21sm22s],
m11s=[(1+S11)(1S22)+S21S12]/2S21,
m12s=[(1+S11)(1+S22)S21S12]/2S21,
m21s=[(1S11)(1S22)S21S12]/2S21,
m22s=[(1S11)(1+S22)+S21S12]/2S21.
S11=Γ1(1T2)1Γ1Γ2T2,S22=Γ2(1T2)1Γ1Γ2T2,
S21=S12=T(1Γ1Γ2)1Γ1Γ2T2,
Γ1(2)=zw+()1zw+()+1,zw=μyyniξ0,
T=eik0nL,n=εzzμyyξ02.
vg=dωdβ=cn+ωdndω,
Pr(f)=|m11T+m12Tm21Tm22Tm11T+m12T+m21T+m22T|2,
Pr(b)=|m22T+m12Tm21Tm11Tm11T+m12T+m21T+m22T|2,
Pt=|2m11T+m12T+m21T+m22T|2,
Pa(f,b)=1Pr(f,b)Pt,

Metrics