Abstract

We report the physical origins of the on-resonant and off-resonant two-photon absorption (TPA) in an open-ladder-type atomic system of the 5S1/2(F=1)-5P3/2(F=0,1,2)-5D5/2(F=1,2,3) transitions in Rb87 atoms. When the on-resonant TPA, including electromagnetically induced transparency (EIT), was transformed into the off-resonant TPA according to the coupling laser frequency detuning, we clarified the dynamics of the atomic coherences by decomposing into the two-photon coherence (TC) and the crossover coherence (CC) terms mixed between one-photon coherence (OC) and TC terms. The physical origins of the two TPAs were completely different; the cause of the on-resonant TPA was the CC term, and that of the off-resonant TPA was the TC term.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  2. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
    [CrossRef]
  3. D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
    [CrossRef]
  4. M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Opt. 53, 2583–2591 (2006).
    [CrossRef]
  5. A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
    [CrossRef]
  6. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
    [CrossRef]
  7. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
    [CrossRef]
  8. W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
    [CrossRef]
  9. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [CrossRef]
  10. V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
    [CrossRef]
  11. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
    [CrossRef]
  12. A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
    [CrossRef]
  13. C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
    [CrossRef]
  14. S. K. Kim, H. S. Moon, K. Kim, and J. B. Kim, “Observation of electromagnetically induced absorption in open systems regardless of angular momentum,” Phys. Rev. A 68, 063813 (2003).
    [CrossRef]
  15. A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
    [CrossRef]
  16. H. J. Kim and H. S. Moon, “Electromagnetically induced absorption with sub-kHz spectral width in a paraffin coated Rb vapor cell,” Opt. Express 19, 168–174 (2011).
    [CrossRef]
  17. Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
    [CrossRef]
  18. F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
    [CrossRef]
  19. M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
    [CrossRef]
  20. H. S. Moon and H.-R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).
  21. N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
    [CrossRef]
  22. H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21, 7447–7455 (2013).
    [CrossRef]
  23. H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
    [CrossRef]
  24. H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
    [CrossRef]
  25. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
    [CrossRef]

2013 (2)

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[CrossRef]

H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21, 7447–7455 (2013).
[CrossRef]

2012 (1)

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[CrossRef]

2011 (4)

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[CrossRef]

H. S. Moon and H.-R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

H. J. Kim and H. S. Moon, “Electromagnetically induced absorption with sub-kHz spectral width in a paraffin coated Rb vapor cell,” Opt. Express 19, 168–174 (2011).
[CrossRef]

2010 (4)

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

2008 (2)

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[CrossRef]

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

2006 (1)

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Opt. 53, 2583–2591 (2006).
[CrossRef]

2003 (2)

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
[CrossRef]

S. K. Kim, H. S. Moon, K. Kim, and J. B. Kim, “Observation of electromagnetically induced absorption in open systems regardless of angular momentum,” Phys. Rev. A 68, 063813 (2003).
[CrossRef]

2001 (1)

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

1999 (3)

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

1998 (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1995 (1)

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

1993 (1)

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

1955 (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Acosta, V. M.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[CrossRef]

Adams, C. S.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[CrossRef]

Akulshin, A. M.

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Bason, M. G.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[CrossRef]

Beausoleil, R. G.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[CrossRef]

Berman, P. R.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Biraben, F.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Bracker, A. S.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Budker, D.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[CrossRef]

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Butscher, B.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[CrossRef]

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Dutton, Z.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Felder, R.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Friedmann, H.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Fujisawa, A.

Gammon, D.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Gauguet, A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

Goren, C.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Hayashi, N.

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Jensen, K.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[CrossRef]

Jin, S.

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

Jones, M. P. A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

Kelly, W. R.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

Kido, H.

Kim, H. J.

Kim, J. B.

S. K. Kim, H. S. Moon, K. Kim, and J. B. Kim, “Observation of electromagnetically induced absorption in open systems regardless of angular momentum,” Phys. Rev. A 68, 063813 (2003).
[CrossRef]

Kim, K.

S. K. Kim, H. S. Moon, K. Kim, and J. B. Kim, “Observation of electromagnetically induced absorption in open systems regardless of angular momentum,” Phys. Rev. A 68, 063813 (2003).
[CrossRef]

Kim, S. K.

S. K. Kim, H. S. Moon, K. Kim, and J. B. Kim, “Observation of electromagnetically induced absorption in open systems regardless of angular momentum,” Phys. Rev. A 68, 063813 (2003).
[CrossRef]

Kimball, D.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Klein, M.

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Opt. 53, 2583–2591 (2006).
[CrossRef]

Kline, J. S.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

Li, Y.

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Marangos, J. P.

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

Maxwell, D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

McLean, R. J.

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

Millerioux, Y.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Mitsunaga, M.

Mohapatra, A. K.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[CrossRef]

Mookerji, B.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

Moon, H. S.

H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21, 7447–7455 (2013).
[CrossRef]

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[CrossRef]

H. S. Moon and H.-R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[CrossRef]

H. J. Kim and H. S. Moon, “Electromagnetically induced absorption with sub-kHz spectral width in a paraffin coated Rb vapor cell,” Opt. Express 19, 168–174 (2011).
[CrossRef]

S. K. Kim, H. S. Moon, K. Kim, and J. B. Kim, “Observation of electromagnetically induced absorption in open systems regardless of angular momentum,” Phys. Rev. A 68, 063813 (2003).
[CrossRef]

Nez, F.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Noh, H.-R.

H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21, 7447–7455 (2013).
[CrossRef]

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[CrossRef]

H. S. Moon and H.-R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[CrossRef]

Novikova, I.

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Opt. 53, 2583–2591 (2006).
[CrossRef]

Ohki, T. A.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

Painter, O.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Pappas, D. P.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

Phillips, D. F.

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Opt. 53, 2583–2591 (2006).
[CrossRef]

Pritchard, J. D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

Rickey, E. G.

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Rochester, S.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Rosenbluh, M.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Santori, C.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[CrossRef]

Schlafer, J.

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

Sham, L. J.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Steel, D. G.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Sun, B.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Taichenachev, A. V.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

Takahashi, K.

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Tumaikin, A. M.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

Walsworth, R. L.

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Opt. 53, 2583–2591 (2006).
[CrossRef]

Weatherill, K. J.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[CrossRef]

Wilson-Gordon, A. D.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
[CrossRef]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Xiao, M.

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

Xu, X.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Yan, M.

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

Yashchuk, V.

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Yudin, V. I.

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

Zhu, Y.

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

J. Mod. Opt. (2)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

M. Klein, I. Novikova, D. F. Phillips, and R. L. Walsworth, “Slow light in paraffin-coated Rb vapour cells,” J. Mod. Opt. 53, 2583–2591 (2006).
[CrossRef]

J. Opt. (1)

A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt. 12, 104001 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

H. S. Moon and H.-R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2–5P3/2–5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).

Nat. Phys. (2)

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008).
[CrossRef]

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008).
[CrossRef]

Nature (1)

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Opt. Commun. (1)

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2-5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Phys. Rev. A (7)

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[CrossRef]

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[CrossRef]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[CrossRef]

M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001).
[CrossRef]

A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802 (1999).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
[CrossRef]

S. K. Kim, H. S. Moon, K. Kim, and J. B. Kim, “Observation of electromagnetically induced absorption in open systems regardless of angular momentum,” Phys. Rev. A 68, 063813 (2003).
[CrossRef]

Phys. Rev. Lett. (5)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83, 4277–4280 (1999).
[CrossRef]

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110, 213605 (2013).
[CrossRef]

W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010).
[CrossRef]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[CrossRef]

D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, “Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,” Phys. Rev. Lett. 83, 1767–1770 (1999).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Energy-level diagram for the open-ladder-type atomic system of the 5S1/2(F=1)-5P3/2(F=0,1,2)-5D5/2(F=1,2,3) transitions in Rb87 and simplified three-level atomic model (|1-|2-|3) considering the 5S1/2-5P3/2-5D5/2 transition of Rb87. (b) TPA spectrum (red curve) including EIT in the configuration of Fig. 1(a) and saturated absorption spectrum of the probe laser (black curve).

Fig. 2.
Fig. 2.

Investigation of the multiphoton effect of the probe laser and the transformation of the on-resonant TPA into the off-resonant TPA according to the probe laser intensity. (a) On-resonant TPA and EIT spectra of the 5S1/2(F=1)-5P3/2-5D5/2 transition for various probe laser intensities with a coupling laser intensity of 3.7mW/mm2. (b) Diagram of the matrix elements from the zeroth to third orders of the Rabi frequencies Ωpn and ΩCm(n,m=0,1,2,3) of the coupling and the probe lasers.

Fig. 3.
Fig. 3.

Investigation of the transformation of the on-resonant TPA into the off-resonant TPA according to the frequency detuning of the coupling laser. (a) On-resonant and off-resonant TPA spectra of the 5S1/2(F=1)-5P3/2-5D5/2 transition according to the frequency detuning of the coupling laser in the probe frequency scanning region of 700 MHz. (b) Magnitude three spectra of Fig. 3(a) at detunings of 0 (black curve), 200 (blue curve), and 360 MHz (red curve).

Fig. 4.
Fig. 4.

Numerically calculated spectra of the 5S1/2(F=1)-5P3/2-5D5/2 transition for various probe laser intensities [same conditions as those in Fig. 2(a)].

Fig. 5.
Fig. 5.

(a) Numerically calculated spectra of the 5S1/2(F=1)-5P3/2-5D5/2 transition at coupling laser frequency detunings of 0 (black curve), 200 (blue curve), and 360 MHz (red curve): decomposition of the spectra in Fig. 5(a) into (b) the CC and (c) TC terms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρOC=(γ1+γ2)Ωp3ΩC2γ2Δ1|Δ1Δ2|2,
ρTC=Ωp3ΩC2Δ02Δ12Δ2,
ρCC=ρ21Ωp3ΩC2ρOCρTC,

Metrics