Abstract

Subwavelength gratings consisting of three layers with periodic structures are investigated. Contrary to the conclusions of many previous works that the transmittance of transverse magnetic (TM) light is higher than that of transverse electric (TE) light over the entire visible range, the transmittance is flipped in the short-wavelength regime, due to localized surface plasmon enhanced absorption of TM light by silver nanowires, while the converse holds in the longer-wavelength region because of the plasmonic waveguiding and cutoff effect of the metal–insulator–metal slits, which enhance TM transmission and prohibit TE propagation, respectively. Thus chromatic polarizations are rendered. Due to their nonresonant character, the spectral responses of the gratings vary little in a wide incident angle range. This work reveals a novel mechanism for fabricating integrated color filters and polarizers conveniently, which has broad applications in LCDs and CMOS sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999).
    [CrossRef]
  2. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).
  4. V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.
  5. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
    [CrossRef]
  6. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
  8. L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef]
  9. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
    [CrossRef]
  10. T. J. Constant, T. S. Taphouse, H. J. Rance, S. C. Kitson, A. P. Hibbins, and J. R. Sambles, “Surface plasmons on zig-zag gratings,” Opt. Express 20, 23921–23926 (2012).
    [CrossRef]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  12. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
    [CrossRef]
  13. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef]
  14. J. Yamauchi, K. Sumida, and H. Nakano, “A TM-pass/TE-stop polarizer consisting of a metal film sandwiched with dielectric gratings,” in Proceedings of the 10th International Symposium on Contemporary Photonics Technology, Tokyo, Japan (2007), Vol. G-15, pp. 93–94.
  15. Y. Wakabayashi, J. Yamauchi, and H. Nakano, “A TM-pass/TE-stop polarizer based on a surface plasmon resonance,” Adv. Optoelectron. 2011, 867271 (2011).
    [CrossRef]
  16. T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
  17. Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18, 5344–5349 (2010).
    [CrossRef]
  18. Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
    [CrossRef]
  19. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
    [CrossRef]
  20. Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [CrossRef]
  21. S. T. Peng, “Rigorous formulation of scattering and guidance by dielectric grating waveguides: general case of oblique incidence,” J. Opt. Soc. Am. A 6, 1869–1883 (1989).
    [CrossRef]
  22. N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, “Diffraction of plane waves incident on a grated dielectric slab: an entire domain integral equation analysis,” Radio Sci. 42, RS6S22 (2007).
    [CrossRef]
  23. A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
    [CrossRef]
  24. S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express 14, 216–221 (2006).
    [CrossRef]
  25. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  26. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
    [CrossRef]
  27. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
    [CrossRef]

2013 (2)

Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
[CrossRef]

Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef]

2012 (1)

2011 (1)

Y. Wakabayashi, J. Yamauchi, and H. Nakano, “A TM-pass/TE-stop polarizer based on a surface plasmon resonance,” Adv. Optoelectron. 2011, 867271 (2011).
[CrossRef]

2010 (2)

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18, 5344–5349 (2010).
[CrossRef]

2007 (2)

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
[CrossRef]

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, “Diffraction of plane waves incident on a grated dielectric slab: an entire domain integral equation analysis,” Radio Sci. 42, RS6S22 (2007).
[CrossRef]

2006 (3)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

S. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express 14, 216–221 (2006).
[CrossRef]

2005 (2)

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

2004 (2)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

2001 (1)

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

1999 (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
[CrossRef]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

1989 (1)

Andres, M. V.

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[CrossRef]

Boria, V. E.

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

Bozhevolnyi, S. I.

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Constant, T. J.

Coves, A.

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Djurišic, A. B.

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

Elazar, J. M.

Elson, J. M.

Feng, S.

Ferri, F.

V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Gil, J.

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

Gimeno, B.

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Gordon, R.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Guo, L.

Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
[CrossRef]

Guo, L. J.

Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef]

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Hibbins, A. P.

Hollowell, A. E.

Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef]

Kaklamani, D. I.

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, “Diffraction of plane waves incident on a grated dielectric slab: an entire domain integral equation analysis,” Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Kitson, S. C.

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Kumar, L. K. S.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Lee, K. G.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

Lee, S. S.

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

Luo, X.

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).

Majewski, M. L.

Marega, E.

V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Moreno, E.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Nakano, H.

Y. Wakabayashi, J. Yamauchi, and H. Nakano, “A TM-pass/TE-stop polarizer based on a surface plasmon resonance,” Adv. Optoelectron. 2011, 867271 (2011).
[CrossRef]

J. Yamauchi, K. Sumida, and H. Nakano, “A TM-pass/TE-stop polarizer consisting of a metal film sandwiched with dielectric gratings,” in Proceedings of the 10th International Symposium on Contemporary Photonics Technology, Tokyo, Japan (2007), Vol. G-15, pp. 93–94.

Park, Q. H.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

Pellerin, K. M.

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Peng, S. T.

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Rakic, A. D.

Rance, H. J.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Rivera, V.

V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.

Sambles, J. R.

San Blas, A. A.

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

Shieh, H.

Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
[CrossRef]

Silva, O.

V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.

Sobreira, F.

V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.

Søndergaard, T.

Sumida, K.

J. Yamauchi, K. Sumida, and H. Nakano, “A TM-pass/TE-stop polarizer consisting of a metal film sandwiched with dielectric gratings,” in Proceedings of the 10th International Symposium on Contemporary Photonics Technology, Tokyo, Japan (2007), Vol. G-15, pp. 93–94.

Sun, S.

Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
[CrossRef]

Taphouse, T. S.

Thio, T.

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

Tsitsas, N. L.

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, “Diffraction of plane waves incident on a grated dielectric slab: an entire domain integral equation analysis,” Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Uzunoglu, N. K.

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, “Diffraction of plane waves incident on a grated dielectric slab: an entire domain integral equation analysis,” Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Wakabayashi, Y.

Y. Wakabayashi, J. Yamauchi, and H. Nakano, “A TM-pass/TE-stop polarizer based on a surface plasmon resonance,” Adv. Optoelectron. 2011, 867271 (2011).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

Wu, Y.

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Wu, Y.-K.

Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef]

Xu, T.

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Yamauchi, J.

Y. Wakabayashi, J. Yamauchi, and H. Nakano, “A TM-pass/TE-stop polarizer based on a surface plasmon resonance,” Adv. Optoelectron. 2011, 867271 (2011).
[CrossRef]

J. Yamauchi, K. Sumida, and H. Nakano, “A TM-pass/TE-stop polarizer consisting of a metal film sandwiched with dielectric gratings,” in Proceedings of the 10th International Symposium on Contemporary Photonics Technology, Tokyo, Japan (2007), Vol. G-15, pp. 93–94.

Ye, Z.

Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
[CrossRef]

Yoon, Y. T.

Zhang, C.

Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef]

Zheng, J.

Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
[CrossRef]

Adv. Mater. (1)

D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11, 860–862 (1999).
[CrossRef]

Adv. Optoelectron. (1)

Y. Wakabayashi, J. Yamauchi, and H. Nakano, “A TM-pass/TE-stop polarizer based on a surface plasmon resonance,” Adv. Optoelectron. 2011, 867271 (2011).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Ye, J. Zheng, S. Sun, L. Guo, and H. Shieh, “Compact transreflective color filters and polarizers by bi-layer metallic nanowire gratings on flexible substrates,” IEEE J. Sel. Top. Quantum Electron. 19, 4800205 (2013).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004).
[CrossRef]

J. Opt. A (2)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7, S97–S101 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Nat. Commun. (1)

T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (2)

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef]

L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Radio Sci. (1)

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, “Diffraction of plane waves incident on a grated dielectric slab: an entire domain integral equation analysis,” Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Sci. Rep. (1)

Y.-K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[CrossRef]

Other (4)

J. Yamauchi, K. Sumida, and H. Nakano, “A TM-pass/TE-stop polarizer consisting of a metal film sandwiched with dielectric gratings,” in Proceedings of the 10th International Symposium on Contemporary Photonics Technology, Tokyo, Japan (2007), Vol. G-15, pp. 93–94.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2006).

V. Rivera, F. Ferri, O. Silva, F. Sobreira, and E. Marega, “Light transmission via subwavelength apertures in metallic thin films,” in Plasmonics—Principles and Applications, K. Y. Kim, ed. (Intech, 2012), Chap. 7, pp. 157–182.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the silver nanowire grating with period T, top silver width t1, bottom silver width t2, dielectric height h1, and silver height h2. The substrate is BK7 glass, and the dielectric is polymethyl methacrylate (PMMA); their refractive indices are both 1.5. The medium above the grating is air with a refractive index of 1.

Fig. 2.
Fig. 2.

AFM (left) and SEM (right) images showing the front and lateral profiles of the grating with T=180nm, t1=144nm, t2=36nm, h1=110nm, and h2=60nm.

Fig. 3.
Fig. 3.

Transmission (measured in dashed lines and simulated in solid lines) of TM- and TE-polarized light normally incident on the grating with T=180nm, t1=144nm, t2=36nm, and h1=110nm. The inset photographs show the observed transmitted colors under the corresponding conditions.

Fig. 4.
Fig. 4.

Measured transmission spectra of TM- and TE-polarized light incident on the grating with T=180nm, t1=144nm, t2=36nm, h1=110nm, h2=60nm (left), and h2=30nm (right) over incident angles from 0° to 80° in increments of 2°. The dashed line on the top right image represents the 1st-order lateral SPR at the interface of the Ag and substrate.

Fig. 5.
Fig. 5.

Dispersion curves of the waveguide modes of TM light and TE light in the grating with T=180nm, t1=144nm and t2=36nm. (a), (b) The bottom Ag/dielectric layer and (c), (d) the top Ag/air layer. The green curves represent the real parts of the wave vector kz, and the red ones are the imaginary parts. The blue and gray straight lines denote the dielectric and air lines of the slits, respectively. The pale yellow areas cover the (vacuum) wavelengths from 400 to 800 nm, and the numbers on the right vertical axis denote the (vacuum) wavelengths in nanometers.

Fig. 6.
Fig. 6.

Simulated transmission, reflection, and absorption spectra for the grating (T=180nm, t1=110nm, t2=70nm, h1=110nm) of (a) TM and (b) TE normal incident light with h2 changing from 20 to 80 nm via rigorous coupled wave analysis (RSoft, DiffractMOD).

Fig. 7.
Fig. 7.

Simulated field intensity distribution of (a) Hy component of 400 nm TM light, (b) Ey component of 400 nm TE light, (c) Hy component of 700 nm TM light, and (d) Ey component of 700 nm TE light via rigorous coupled wave analysis (RSoft, DiffractMOD). The black lines show the outline of the grating with T=180nm, t1=110nm, t2=70nm, h1=110nm, and h2=50nm.

Fig. 8.
Fig. 8.

Simulated transmission spectra of normally incident TM and TE light for the gratings with T=180nm, t1=110nm, t2=70nm, h2=50nm, and h1 ranging from 90 to 130 nm via rigorous coupled wave analysis (RSoft, DiffractMOD).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos(KT)=cos(k1d1)cos(k2d2)1/2(g+1/g)sin(k1d1)sin(k2d2),
d=1/(2kzi),
2km[neff-bottomh2+neff-middle(h1h2)]+2ϕ=2πm,

Metrics