Abstract

We demonstrate that all the available experimental data of temperature (T)-dependent shift of photoluminescence (PL) peak of In(Ga)As quantum dots (QDs) can be fitted successfully by using a two-oscillator model if and only if the whole temperature interval (0–300 K) is divided into a few parts (at most four parts), depending on dispersion degree of the PL peak from a monotonic behavior. Analysis of the numerical results show that excitons mostly interact (inelastically) with acoustic (AC) or optical (OP) phonons separately. Increasing QDs uniformity, by using some improved growth techniques, results in decreasing or removing the sigmoidal behavior, enhancing total AC phonon contribution and the maximum temperature that AC phonons contribute to the T-dependent redshift of the PL peak. Elevation of the zero bandgap (ZBG) energy up to a critical value about 1.4 eV, for In(Ga)As QDs grown using molecular-beam epitaxy, results in enhancement of QD symmetry and total OP phonon contribution and decline of QDs uniformity and total AC phonon contribution, while a rollover happens for further increase of the ZBG. Therefore we find that the highest QD symmetry and the lowest exciton fine structure splitting correspond to this critical value of ZBG, in accordance with previous experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
    [CrossRef]
  2. D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
    [CrossRef]
  3. J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
    [CrossRef]
  4. D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,” Opt. Laser Technol. 44, 2436–2442 (2012).
    [CrossRef]
  5. D. Ghodsi Nahri, “Investigation of the effects of nonlinear optical gain and thermal carrier excitation on characteristics of self-assembled quantum-dot lasers,” Opt. Express 20, 14754–14768 (2012).
    [CrossRef]
  6. D. Ghodsi Nahri, “Analysis of dynamic, modulation, and output power properties of self-assembled quantum dot lasers,” Laser Phys. Lett. 9, 682–690 (2012).
    [CrossRef]
  7. M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
    [CrossRef]
  8. X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190  K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
    [CrossRef]
  9. A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
    [CrossRef]
  10. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [CrossRef]
  11. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
    [CrossRef]
  12. R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
    [CrossRef]
  13. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
    [CrossRef]
  14. J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
    [CrossRef]
  15. P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
    [CrossRef]
  16. J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
    [CrossRef]
  17. J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
    [CrossRef]
  18. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [CrossRef]
  19. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [CrossRef]
  20. Y. P. Varshni, “Temperature dependence of the elastic constants,” Phys. Rev. B 2, 3952–3958 (1970).
    [CrossRef]
  21. H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
    [CrossRef]
  22. H. Y. Fan, Photon-Electron Interaction, Crystals Without Fields (Springer, 1967), p. 134.
  23. L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30, 1979–1991 (1984).
    [CrossRef]
  24. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2927 (1991).
    [CrossRef]
  25. R. Pässler, “Alternative analytical descriptions of the temperature dependence of the energy gap in cadmium sulfide,” Phys. Status Solidi B 193, 135–144 (1996).
    [CrossRef]
  26. R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Status Solidi B 200, 155–172 (1997).
    [CrossRef]
  27. R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Status Solidi B 216, 975–1007 (1999).
    [CrossRef]
  28. R. Pässler, “Moderate phonon dispersion shown by the temperature dependence of fundamental band gaps of various elemental and binary semiconductors including wide-band gap materials,” Appl. Phys. 88, 2570–2577 (2000).
    [CrossRef]
  29. R. Pässler, “Temperature dependence of fundamental band gaps in group IV, III–V, and II–VI materials via a two-oscillator model,” Appl. Phys. 89, 6235–6240 (2001).
    [CrossRef]
  30. R. Pässler, “Dispersion-related description of temperature dependencies of band gaps in semiconductors,” Phys. Rev. B 66, 085201 (2002).
    [CrossRef]
  31. R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors,” Phys. Status Solidi B 236, 710–728 (2003).
    [CrossRef]
  32. P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
    [CrossRef]
  33. J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
    [CrossRef]
  34. B. Ullrich, X. Y. Xiao, and G. J. Brown, “Photoluminescence of PbS quantum dots on semi-insulating GaAs,” Appl. Phys. 108, 013525 (2010).
    [CrossRef]
  35. I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
    [CrossRef]
  36. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
    [CrossRef]
  37. H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
    [CrossRef]
  38. Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
    [CrossRef]
  39. G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
    [CrossRef]
  40. X. Lu, J. Vaillancourt, and H. Wen, “Temperature-dependent energy gap variation in InAs/GaAs quantum dots,” Appl. Phys. Lett. 96, 173105 (2010).
    [CrossRef]
  41. I. Yeo, J. D. Song, and J. Lee, “Temperature-dependent energy band gap variation in self-organized InAs quantum dots,” Appl. Phys. Lett. 99, 151909 (2011).
    [CrossRef]
  42. Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
    [CrossRef]
  43. N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
    [CrossRef]
  44. S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
    [CrossRef]
  45. A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
    [CrossRef]
  46. Semiconductors on NSM: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ .
  47. H. T. O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (New Series, Group III, Springer, 1982–89), Vol. 17a/b and 22a.
  48. R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
    [CrossRef]
  49. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
    [CrossRef]
  50. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
    [CrossRef]
  51. E. A. Muljarov and R. Zimmermann, “Dephasing in quantum dots: quadratic coupling to acoustic phonons,” Phys. Rev. Lett. 93, 237401 (2004).
    [CrossRef]
  52. P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [CrossRef]
  53. A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
    [CrossRef]
  54. T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638–2652 (1999).
    [CrossRef]
  55. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
    [CrossRef]
  56. P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
    [CrossRef]
  57. L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
    [CrossRef]
  58. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
    [CrossRef]
  59. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
    [CrossRef]
  60. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
    [CrossRef]
  61. R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
    [CrossRef]
  62. R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
    [CrossRef]
  63. E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
    [CrossRef]

2013 (1)

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

2012 (4)

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,” Opt. Laser Technol. 44, 2436–2442 (2012).
[CrossRef]

D. Ghodsi Nahri, “Investigation of the effects of nonlinear optical gain and thermal carrier excitation on characteristics of self-assembled quantum-dot lasers,” Opt. Express 20, 14754–14768 (2012).
[CrossRef]

D. Ghodsi Nahri, “Analysis of dynamic, modulation, and output power properties of self-assembled quantum dot lasers,” Laser Phys. Lett. 9, 682–690 (2012).
[CrossRef]

2011 (3)

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

I. Yeo, J. D. Song, and J. Lee, “Temperature-dependent energy band gap variation in self-organized InAs quantum dots,” Appl. Phys. Lett. 99, 151909 (2011).
[CrossRef]

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

2010 (5)

X. Lu, J. Vaillancourt, and H. Wen, “Temperature-dependent energy gap variation in InAs/GaAs quantum dots,” Appl. Phys. Lett. 96, 173105 (2010).
[CrossRef]

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

B. Ullrich, X. Y. Xiao, and G. J. Brown, “Photoluminescence of PbS quantum dots on semi-insulating GaAs,” Appl. Phys. 108, 013525 (2010).
[CrossRef]

2008 (2)

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
[CrossRef]

2007 (2)

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190  K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
[CrossRef]

2006 (2)

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

2005 (4)

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

2004 (3)

E. A. Muljarov and R. Zimmermann, “Dephasing in quantum dots: quadratic coupling to acoustic phonons,” Phys. Rev. Lett. 93, 237401 (2004).
[CrossRef]

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

2003 (2)

R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors,” Phys. Status Solidi B 236, 710–728 (2003).
[CrossRef]

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

2002 (2)

R. Pässler, “Dispersion-related description of temperature dependencies of band gaps in semiconductors,” Phys. Rev. B 66, 085201 (2002).
[CrossRef]

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

2001 (4)

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[CrossRef]

R. Pässler, “Temperature dependence of fundamental band gaps in group IV, III–V, and II–VI materials via a two-oscillator model,” Appl. Phys. 89, 6235–6240 (2001).
[CrossRef]

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

2000 (5)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

R. Pässler, “Moderate phonon dispersion shown by the temperature dependence of fundamental band gaps of various elemental and binary semiconductors including wide-band gap materials,” Appl. Phys. 88, 2570–2577 (2000).
[CrossRef]

A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
[CrossRef]

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

1999 (6)

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[CrossRef]

A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
[CrossRef]

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638–2652 (1999).
[CrossRef]

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Status Solidi B 216, 975–1007 (1999).
[CrossRef]

1997 (2)

R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Status Solidi B 200, 155–172 (1997).
[CrossRef]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

1996 (4)

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

R. Pässler, “Alternative analytical descriptions of the temperature dependence of the energy gap in cadmium sulfide,” Phys. Status Solidi B 193, 135–144 (1996).
[CrossRef]

1994 (1)

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

1993 (1)

D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
[CrossRef]

1991 (1)

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2927 (1991).
[CrossRef]

1987 (1)

S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

1985 (1)

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
[CrossRef]

1984 (1)

L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30, 1979–1991 (1984).
[CrossRef]

1970 (1)

Y. P. Varshni, “Temperature dependence of the elastic constants,” Phys. Rev. B 2, 3952–3958 (1970).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

1951 (1)

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
[CrossRef]

Adams, M. J.

M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
[CrossRef]

Alexandropoulos, D.

M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
[CrossRef]

Alferov, Zh. I.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Andre, E.

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Baira, M.

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Bakarov, A. K.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Barthe, F.

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

Barve, A.

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

Bayer, M.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

Bazin, M.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Bennett, A. J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Besombes, L.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[CrossRef]

Bimberg, D.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[CrossRef]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Bleuse, J.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Born, H.

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

Borri, P.

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Bouzaiene, L.

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Brown, G. J.

B. Ullrich, X. Y. Xiao, and G. J. Brown, “Photoluminescence of PbS quantum dots on semi-insulating GaAs,” Appl. Phys. 108, 013525 (2010).
[CrossRef]

Bru-Chevallier, C.

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Capizzi, M.

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

Cardona, M.

A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
[CrossRef]

L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30, 1979–1991 (1984).
[CrossRef]

Chan, K. H. A.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

Chang, L. L.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Charasse, M. N.

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
[CrossRef]

Chemla, D. S.

S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Chen, P.

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

Chen, X.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2927 (1991).
[CrossRef]

Cho, N. K.

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

Choi, W. J.

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

Claudon, J.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Dachner, M. R.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Denbaars, S. P.

D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Derebezov, I. A.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Duan, R. F.

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Eckey, L.

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Egorov, A. Yu.

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Fafard, S.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

Fan, H. Y.

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
[CrossRef]

H. Y. Fan, Photon-Electron Interaction, Crystals Without Fields (Springer, 1967), p. 134.

Farrer, I.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Fischer, M.

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

Forchel, A.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

Franchi, S.

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

Frigeri, P.

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

Gammon, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[CrossRef]

Ge, W. K.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Gerard, J.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Ghodsi Nahri, D.

D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,” Opt. Laser Technol. 44, 2436–2442 (2012).
[CrossRef]

D. Ghodsi Nahri, “Investigation of the effects of nonlinear optical gain and thermal carrier excitation on characteristics of self-assembled quantum-dot lasers,” Opt. Express 20, 14754–14768 (2012).
[CrossRef]

D. Ghodsi Nahri, “Analysis of dynamic, modulation, and output power properties of self-assembled quantum dot lasers,” Laser Phys. Lett. 9, 682–690 (2012).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Glas, F.

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
[CrossRef]

Gobel, A.

A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
[CrossRef]

Goldhahn, R.

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

Goldstein, L.

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
[CrossRef]

Grassi Alessi, M.

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

Gregersen, N.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Groom, K. M.

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Grundmann, M.

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Haisler, V. A.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Hawrylak, P.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

Heitz, R.

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[CrossRef]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Henini, M.

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

Hernández-Rosas, J.

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

Hoffmann, A.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Houzay, F.

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Huerta-Ruelas, J.

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Jauho, A.-P.

A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
[CrossRef]

Jeon, H.

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

Katzer, D. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Kheng, K.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Khmissi, H.

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Knorr, A.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Koguchi, N.

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

Kop’ev, P. S.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

Kopev, P. S.

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Kortov, V. S.

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

Krishna, S.

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

Krishnamurth, M.

D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Kulakovskii, V. D.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Lalanne, P.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Lang, R.

A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Lauck, R.

A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
[CrossRef]

Le Roux, G.

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
[CrossRef]

Ledentsov, N. N.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Lee, J.

I. Yeo, J. D. Song, and J. Lee, “Temperature-dependent energy band gap variation in self-organized InAs quantum dots,” Appl. Phys. Lett. 99, 151909 (2011).
[CrossRef]

Lee, J. I.

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

Lee, S.

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

Leonard, D.

D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
[CrossRef]

Leprince, L.

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

Li, Q.

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Liu, H. C.

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Lochmann, A.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Logothetidis, S.

L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30, 1979–1991 (1984).
[CrossRef]

López-López, M.

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

Lu, X.

X. Lu, J. Vaillancourt, and H. Wen, “Temperature-dependent energy gap variation in InAs/GaAs quantum dots,” Appl. Phys. Lett. 96, 173105 (2010).
[CrossRef]

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190  K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

Lu, Z. D.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Lucamarini, M.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

Maaref, H.

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Madelung, H. T. O.

H. T. O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (New Series, Group III, Springer, 1982–89), Vol. 17a/b and 22a.

Madhukar, A.

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[CrossRef]

Malik, N.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Mano, T.

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

Mariette, H.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[CrossRef]

Marsal, L.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[CrossRef]

Marzin, J. Y.

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
[CrossRef]

Meisner, M. J.

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190  K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Miller, D. A. B.

S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Misiewicz, J.

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

Moison, J. M.

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

Mørk, J.

A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
[CrossRef]

Moser, P.

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

Mukhametzhanov, I.

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[CrossRef]

Muljarov, E. A.

E. A. Muljarov and R. Zimmermann, “Dephasing in quantum dots: quadratic coupling to acoustic phonons,” Phys. Rev. Lett. 93, 237401 (2004).
[CrossRef]

Nicoll, C. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Nilsson, J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

Noh, S.

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

O’Donnell, K. P.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2927 (1991).
[CrossRef]

Ortner, G.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

Oshima, M.

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

Park, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[CrossRef]

Pässler, R.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors,” Phys. Status Solidi B 236, 710–728 (2003).
[CrossRef]

R. Pässler, “Dispersion-related description of temperature dependencies of band gaps in semiconductors,” Phys. Rev. B 66, 085201 (2002).
[CrossRef]

R. Pässler, “Temperature dependence of fundamental band gaps in group IV, III–V, and II–VI materials via a two-oscillator model,” Appl. Phys. 89, 6235–6240 (2001).
[CrossRef]

R. Pässler, “Moderate phonon dispersion shown by the temperature dependence of fundamental band gaps of various elemental and binary semiconductors including wide-band gap materials,” Appl. Phys. 88, 2570–2577 (2000).
[CrossRef]

R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Status Solidi B 216, 975–1007 (1999).
[CrossRef]

R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Status Solidi B 200, 155–172 (1997).
[CrossRef]

R. Pässler, “Alternative analytical descriptions of the temperature dependence of the energy gap in cadmium sulfide,” Phys. Status Solidi B 193, 135–144 (1996).
[CrossRef]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Petrof, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Petroff, P. M.

D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
[CrossRef]

Piermarocchi, C.

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

Reaves, C. M.

D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Reinhardt, M.

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Reitzenstein, S.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Reuter, D.

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

Richter, M.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Ritchie, D. A.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Rojas-Ramírez, J. S.

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

Rotter, T.

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

Ruf, T.

A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Ryczko, K.

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

Ryu, S. P.

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

Saidi, F.

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Salter, C. L.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Sanguinetti, S.

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

Santori, C.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Sauvan, C.

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Schliwa, A.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Schmitt-Rink, S.

S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Schwab, M.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

Sezk, G.

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

Sfaxi, L.

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Sham, L. J.

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

Shanabrook, B. V.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[CrossRef]

Sharma, Y.

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Shields, A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

Shields, A. J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Simos, H.

M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
[CrossRef]

Sitarek, P.

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

SJk, G.

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

Skiba-Szymanska, J.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

Skolnick, M. S.

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Snow, E. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[CrossRef]

Song, J. D.

I. Yeo, J. D. Song, and J. Lee, “Temperature-dependent energy band gap variation in self-organized InAs quantum dots,” Appl. Phys. Lett. 99, 151909 (2011).
[CrossRef]

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

Stavarache, V.

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

Stevenson, R. M.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Stier, O.

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[CrossRef]

Stock, E.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Syvridis, D.

M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
[CrossRef]

Takagahara, T.

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638–2652 (1999).
[CrossRef]

Tartakovskii, A. I.

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Tateno, T.

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

Toropov, A. I.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Tromborg, B.

A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
[CrossRef]

Ullrich, B.

B. Ullrich, X. Y. Xiao, and G. J. Brown, “Photoluminescence of PbS quantum dots on semi-insulating GaAs,” Appl. Phys. 108, 013525 (2010).
[CrossRef]

Uskov, A. V.

A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
[CrossRef]

Ustinov, V. M.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Vaillancourt, J.

X. Lu, J. Vaillancourt, and H. Wen, “Temperature-dependent energy gap variation in InAs/GaAs quantum dots,” Appl. Phys. Lett. 96, 173105 (2010).
[CrossRef]

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190  K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

Vainshtein, I. A.

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the elastic constants,” Phys. Rev. B 2, 3952–3958 (1970).
[CrossRef]

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Vasileiadis, M.

M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
[CrossRef]

Vatel, O.

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

Veit, M.

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Vina, L.

L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30, 1979–1991 (1984).
[CrossRef]

Wakaki, M.

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

Wang, J.

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Wang, Y.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Ward, M. B.

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

Warming, T.

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

Wasilewski, Z.

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

Wei, Z. F.

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Wen, H.

X. Lu, J. Vaillancourt, and H. Wen, “Temperature-dependent energy gap variation in InAs/GaAs quantum dots,” Appl. Phys. Lett. 96, 173105 (2010).
[CrossRef]

Wieck, A. D.

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

Xiao, X. Y.

B. Ullrich, X. Y. Xiao, and G. J. Brown, “Photoluminescence of PbS quantum dots on semi-insulating GaAs,” Appl. Phys. 108, 013525 (2010).
[CrossRef]

Xu, J. Z.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Xu, S. J.

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Xu, Z. Y.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Yamamoto, Y.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Yang, X. P.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Yeo, I.

I. Yeo, J. D. Song, and J. Lee, “Temperature-dependent energy band gap variation in self-organized InAs quantum dots,” Appl. Phys. Lett. 99, 151909 (2011).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

Yuan, Z. L.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Zatsepin, A. F.

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

Zeng, Y. P.

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Zhang, J. M.

A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
[CrossRef]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Zheng, B. Z.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

Zhukov, A. E.

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

Zimmermann, R.

E. A. Muljarov and R. Zimmermann, “Dephasing in quantum dots: quadratic coupling to acoustic phonons,” Phys. Rev. Lett. 93, 237401 (2004).
[CrossRef]

Appl. Phys. (6)

R. Pässler, “Moderate phonon dispersion shown by the temperature dependence of fundamental band gaps of various elemental and binary semiconductors including wide-band gap materials,” Appl. Phys. 88, 2570–2577 (2000).
[CrossRef]

R. Pässler, “Temperature dependence of fundamental band gaps in group IV, III–V, and II–VI materials via a two-oscillator model,” Appl. Phys. 89, 6235–6240 (2001).
[CrossRef]

J. S. Rojas-Ramírez, R. Goldhahn, P. Moser, J. Huerta-Ruelas, J. Hernández-Rosas, and M. López-López, “Temperature dependence of the photoluminescence emission from InGaAs quantum wells on GaAs(311) substrates,” Appl. Phys. 104, 124304 (2008).
[CrossRef]

B. Ullrich, X. Y. Xiao, and G. J. Brown, “Photoluminescence of PbS quantum dots on semi-insulating GaAs,” Appl. Phys. 108, 013525 (2010).
[CrossRef]

H. Khmissi, M. Baira, L. Sfaxi, L. Bouzaıene, F. Saidi, C. Bru-Chevallier, and H. Maaref, “Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure,” Appl. Phys. 109, 054316 (2011).
[CrossRef]

Z. F. Wei, S. J. Xu, R. F. Duan, Q. Li, J. Wang, Y. P. Zeng, and H. C. Liu, “Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density,” Appl. Phys. 98, 084305 (2005).
[CrossRef]

Appl. Phys. Lett. (12)

X. Lu, J. Vaillancourt, and H. Wen, “Temperature-dependent energy gap variation in InAs/GaAs quantum dots,” Appl. Phys. Lett. 96, 173105 (2010).
[CrossRef]

I. Yeo, J. D. Song, and J. Lee, “Temperature-dependent energy band gap variation in self-organized InAs quantum dots,” Appl. Phys. Lett. 99, 151909 (2011).
[CrossRef]

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, “Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy,” Appl. Phys. Lett. 88, 133104 (2006).
[CrossRef]

S. Sanguinetti, T. Mano, M. Oshima, T. Tateno, M. Wakaki, and N. Koguchi, “Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer,” Appl. Phys. Lett. 81, 3067–3069 (2002).
[CrossRef]

R. Heitz, H. Born, A. Hoffmann, D. Bimberg, I. Mukhametzhanov, and A. Madhukar, “Resonant Raman scattering in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 77, 3746–3748 (2000).
[CrossRef]

R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kopev, and Zh. I. Alferov, “Multiphonon relaxation processes in self-organized InAs/GaAs quantum dots,” Appl. Phys. Lett. 68, 361–363 (1996).
[CrossRef]

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2927 (1991).
[CrossRef]

L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett. 47, 1099–1101 (1985).
[CrossRef]

D. Leonard, M. Krishnamurth, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett. 63, 3203–3205 (1993).
[CrossRef]

J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, and O. Vatel, “Self-organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett. 64, 196–198 (1994).
[CrossRef]

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190  K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91, 051115 (2007).
[CrossRef]

A. Barve, T. Rotter, Y. Sharma, S. Lee, S. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett. 97, 061105 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Vasileiadis, D. Alexandropoulos, M. J. Adams, H. Simos, and D. Syvridis, “Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 14, 1180–1187 (2008).
[CrossRef]

Laser Phys. Lett. (1)

D. Ghodsi Nahri, “Analysis of dynamic, modulation, and output power properties of self-assembled quantum dot lasers,” Laser Phys. Lett. 9, 682–690 (2012).
[CrossRef]

Nat. Photonics (3)

J. Nilsson, R. M. Stevenson, K. H. A. Chan, J. Skiba-Szymanska, M. Lucamarini, M. B. Ward, A. J. Bennett, C. L. Salter, I. Farrer, D. A. Ritchie, and A. J. Shields, “Quantum teleportation using a light-emitting diode,” Nat. Photonics 7, 311–315 (2013).
[CrossRef]

J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. Gerard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007).
[CrossRef]

Nature (4)

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

J. P. Reithmaier, G. SJk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465, 594–597 (2010).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,” Opt. Laser Technol. 44, 2436–2442 (2012).
[CrossRef]

Phys. Rev. (1)

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
[CrossRef]

Phys. Rev. B (14)

Y. P. Varshni, “Temperature dependence of the elastic constants,” Phys. Rev. B 2, 3952–3958 (1970).
[CrossRef]

L. Vina, S. Logothetidis, and M. Cardona, “Temperature dependence of the dielectric function of germanium,” Phys. Rev. B 30, 1979–1991 (1984).
[CrossRef]

R. Pässler, “Dispersion-related description of temperature dependencies of band gaps in semiconductors,” Phys. Rev. B 66, 085201 (2002).
[CrossRef]

R. J. Young, R. M. Stevenson, A. J. Shields, P. Atkinson, K. Cooper, D. A. Ritchie, K. M. Groom, A. I. Tartakovskii, and M. S. Skolnick, “Inversion of exciton level splitting in quantum dots,” Phys. Rev. B 72, 113305 (2005).
[CrossRef]

E. Stock, M. R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg, “Acoustic and optical phonon scattering in a single In(Ga)As quantum dot,” Phys. Rev. B 83, 041304(R) (2011).
[CrossRef]

S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B 60, 8276–8283 (1999).
[CrossRef]

A. Gobel, T. Ruf, J. M. Zhang, R. Lauck, and M. Cardona, “Phonons and fundamental gap in ZnSe: effects of the isotopic composition,” Phys. Rev. B 59, 2749–2759 (1999).
[CrossRef]

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B 54, 11528–11531 (1996).
[CrossRef]

G. Ortner, M. Schwab, M. Bayer, R. Pässler, S. Fafard, Z. Wasilewski, P. Hawrylak, and A. Forchel, “Temperature dependence of the excitonic band gap in InGaAs/GaAs self-assembled quantum dots,” Phys. Rev. B 72, 085328 (2005).
[CrossRef]

R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B 56, 10435–10445 (1997).
[CrossRef]

T. Takagahara, “Theory of exciton dephasing in semiconductor quantum dots,” Phys. Rev. B 60, 2638–2652 (1999).
[CrossRef]

S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987).
[CrossRef]

P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement,” Phys. Rev. B 71, 115328 (2005).
[CrossRef]

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, “Acoustic phonon broadening mechanism in single quantum dot emission,” Phys. Rev. B 63, 155307 (2001).
[CrossRef]

Phys. Rev. Lett. (8)

E. A. Muljarov and R. Zimmermann, “Dephasing in quantum dots: quadratic coupling to acoustic phonons,” Phys. Rev. Lett. 93, 237401 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, and U. Woggon, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[CrossRef]

A. V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, and R. Lang, “Dephasing times in quantum dots due to elastic LO phonon-carrier collisions,” Phys. Rev. Lett. 85, 1516–1519 (2000).
[CrossRef]

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[CrossRef]

R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-LO-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999).
[CrossRef]

P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001).
[CrossRef]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,” Phys. Rev. Lett. 108, 040503 (2012).
[CrossRef]

Phys. Solid State (1)

I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, “Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap,” Phys. Solid State 41, 905–908 (1999).
[CrossRef]

Phys. Status Solidi B (4)

R. Pässler, “Semi-empirical descriptions of temperature dependences of band gaps in semiconductors,” Phys. Status Solidi B 236, 710–728 (2003).
[CrossRef]

R. Pässler, “Alternative analytical descriptions of the temperature dependence of the energy gap in cadmium sulfide,” Phys. Status Solidi B 193, 135–144 (1996).
[CrossRef]

R. Pässler, “Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors,” Phys. Status Solidi B 200, 155–172 (1997).
[CrossRef]

R. Pässler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors,” Phys. Status Solidi B 216, 975–1007 (1999).
[CrossRef]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petrof, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Solid-state Electron. (1)

P. Sitarek, K. Ryczko, G. Sezk, J. Misiewicz, M. Fischer, M. Reinhardt, and A. Forchel, “Optical investigations of InGaAsN/GaAs single quantum well structures,” Solid-state Electron. 47, 489–492 (2003).
[CrossRef]

Other (3)

H. Y. Fan, Photon-Electron Interaction, Crystals Without Fields (Springer, 1967), p. 134.

Semiconductors on NSM: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/ .

H. T. O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (New Series, Group III, Springer, 1982–89), Vol. 17a/b and 22a.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

T-dependent shift of PL peak for SOQDs with different thicknesses (a) 1.8, (b) 2.4, and (c) 18 MLs. The experimental data have been taken from Refs. [36,41], and [38].

Fig. 2.
Fig. 2.

Fitted T-dependent shift of PL peak for SOQDs with different thicknesses: (a) 1, (b) 1.5, (c) 2, and (d) 2.5 MLs. The experimental data have been taken from [42].

Fig. 3.
Fig. 3.

Fitted T-dependent shrinkage of bandgap peak for SOQDs grown by MBE, HDE, and MBE+MDH techniques with different thicknesses: (a) and (b) 1.6, (c) and (d) 2.4. The experimental data have been taken from [37] and [44].

Fig. 4.
Fig. 4.

PL peak shift of QDs grown using (a) MBE and (b) migration-enhanced MBE [MEMBE (MEE)] for the same number of 3 MLs. The experimental data have been taken from [36] and [41].

Fig. 5.
Fig. 5.

Fitted T-dependent shrinkage of bandgap energy peak for SOQDs with a different number of layers (a) 5 and (b) 10. The experimental data have been taken from [40].

Tables (5)

Tables Icon

Table 1. Phonon Energy Peaks for GaAs, InAs, and InGaAs Bulk [46,47]

Tables Icon

Table 2. Parameters Obtained Using Fit, Eqs. (8) and (9), the Final Column Shows the Obtained Transition Temperatures for SOQDs with 1.8, 2.4, and 18 MLs

Tables Icon

Table 3. Parameters Obtained Using Fit, Eqs. (8) and (9), and the Obtained Transition Temperatures for SOQDs with 1, 1.5, 2, and 2.5 MLs

Tables Icon

Table 4. Parameters Obtained Using Fit, Eqs. (8) and (9), and the Obtained Transition Temperatures for SOQDs Grown Using MBE, HDE, MBE+MDH, and MEE Methods with 1.6, 2.4, and 3 MLs

Tables Icon

Table 5. Parameters Obtained Using Fit, Eqs. (8) and (9), and the Obtained Transition Temperatures for SOQDs with Different Number of Layers 5 and 10

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Eg(T)=Eg(0)αkBdεw(ε)εexp(ε/kBT)1,
w(ε)=i=1NWiδ(εεi)wherei=1NWi=1.
Eg(T)=Eg(0)αi=1NWiθiexp(θi/T)1.
Eg(T)=Eg(0)αθexp(θT)1=Eg(0)αθ2[coth(θ2T)1],
Eg(T)=Eg(0)A(n+const),
A=αω/kB=e22m0ω14πε(1ε1ε0)(mem0+mhm0),
Eg(T)=Eg(0)α(W1θ1exp(θ1/T)1+(1W1)θ2exp(θ2/T)1),
θ1,2=ε1,2/kBandθ=W1θ1+(1W1)θ2.
Δ=(θ2θ)(θθ1)/θ.
min(SNRmean,n)=min(i=1nminSNR(i))=min(i=1nmin(mi×j=1mi|Egifit(Tj)Egireal(Tj)|2)i=1nminmi+(nmin1)),
ΔTtot1(2)=l=1nminWl1(2)ΔTltrns,

Metrics