Abstract

In this work, we show both experimentally and by numerical simulations that the presence and evolution of a ring dark beam and/or an on-axis optical vortex nested on a bright background beam noticeably perturb the host background. In a photorefractive nonlinear medium (crystal SBN) these perturbations can initiate self-focusing of the background. By changing the dark ring radius and the presence of an optical vortex and keeping all other experimental parameters unchanged, we can control the dynamics at the initial stage of longitudinal self-focusing and the type of self-focusing structure (single peak or bright ring of variable radius). The presented results may appear especially important in experiments that involve cascaded nonlinear frequency mixing of singular beams, in which accelerated dark beam spreading is accompanied by self-focusing of certain portions of the perturbed host beam.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
    [CrossRef]
  2. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998).
    [CrossRef]
  3. D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
    [CrossRef]
  4. K. Besuchanov, A. Dreischuh, M. G. Schätzel, G. G. Paulus, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29, 1942–1944 (2004).
    [CrossRef]
  5. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre–Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett. 32, 2025–2027 (2007).
    [CrossRef]
  6. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005).
    [CrossRef]
  7. J. Strohaber, T. Scarborough, and C. J. G. J. Uiterwaal, “Ultrashort intense-field optical vortices produced with laser-etched mirrors,” Appl. Opt. 46, 8583–8590 (2007).
    [CrossRef]
  8. K. Besuchanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, “Spatial phase dislocations in femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 26–35 (2006).
    [CrossRef]
  9. A. Schwarz and W. Rudolph, “Dispersion-compensating beam shaper for femtosecond optical vortex beams,” Opt. Lett. 33, 2970–2972 (2008).
    [CrossRef]
  10. G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31, 2042–2044 (2006).
    [CrossRef]
  11. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Królikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006).
    [CrossRef]
  12. D. Neshev, A. Dreischuh, V. Shvedov, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, “Observation of polychromatic vortex solitons,” Opt. Lett. 33, 1851–1853 (2008).
    [CrossRef]
  13. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17, 14517–14525 (2009).
    [CrossRef]
  14. D. Buccoliero, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33, 198–200 (2008).
    [CrossRef]
  15. P. Hansinger, A. Dreischuh, and G. G. Paulus, “Optical vortices in self-focusing Kerr nonlinear media,” Opt. Commun. 282, 3349–3355 (2009).
    [CrossRef]
  16. G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Self-focusing and filamentation of optical vortex beams: spatiotemporal analysis,” Proc. SPIE 7501, 75010G (2009).
    [CrossRef]
  17. G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Nonlinear beam steering by fractional vortex dipoles,” Phys. Rev. A 80, 053828 (2009).
    [CrossRef]
  18. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
    [CrossRef]
  19. W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
    [CrossRef]
  20. L. Torner and D. V. Petrov, “Splitting of light beams with spiral phase dislocations into solitons in bulk quadratic nonlinear media,” Electron. Lett. 33, 608 (1997).
    [CrossRef]
  21. L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
    [CrossRef]
  22. A. Vinçotte and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
    [CrossRef]
  23. A. V. Gorbach and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a Raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
    [CrossRef]
  24. W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
    [CrossRef]
  25. Y. Zhang, Z. Nie, Y. Zhao, Ch. Li, R. Wang, J. Si, and M. Xiao, “Modulated vortex solitons of four-wave mixing,” Opt. Express 18, 10963–10972 (2010).
    [CrossRef]
  26. F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011).
    [CrossRef]
  27. M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
    [CrossRef]
  28. A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
    [CrossRef]
  29. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [CrossRef]
  30. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
    [CrossRef]
  31. G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
    [CrossRef]
  32. C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
    [CrossRef]
  33. P. Hansinger, A. Dreischuh, and G. G. Paulus, “Vortices in ultrashort laser pulses,” Appl. Phys. B 104, 561–567 (2011).
    [CrossRef]
  34. G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011).
    [CrossRef]
  35. A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999).
    [CrossRef]
  36. A. Zakery and A. Keshavarz, “Simulation of the incoherent interaction between two bright spatial photorefractive screening solitons in one and two dimensions,” J. Phys. D 37, 3409–3418 (2004).
    [CrossRef]
  37. M.-F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
    [CrossRef]
  38. W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
    [CrossRef]
  39. L. Janicijevic and S. Topuzoski, “Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings,” J. Opt. Soc. Am. A 25, 2659–2669 (2008).
    [CrossRef]
  40. D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997).
    [CrossRef]
  41. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
    [CrossRef]
  42. A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
    [CrossRef]

2012 (1)

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
[CrossRef]

2011 (3)

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Vortices in ultrashort laser pulses,” Appl. Phys. B 104, 561–567 (2011).
[CrossRef]

G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011).
[CrossRef]

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011).
[CrossRef]

2010 (1)

2009 (4)

Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express 17, 14517–14525 (2009).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Optical vortices in self-focusing Kerr nonlinear media,” Opt. Commun. 282, 3349–3355 (2009).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Self-focusing and filamentation of optical vortex beams: spatiotemporal analysis,” Proc. SPIE 7501, 75010G (2009).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Nonlinear beam steering by fractional vortex dipoles,” Phys. Rev. A 80, 053828 (2009).
[CrossRef]

2008 (4)

2007 (3)

2006 (5)

2005 (2)

2004 (2)

K. Besuchanov, A. Dreischuh, M. G. Schätzel, G. G. Paulus, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29, 1942–1944 (2004).
[CrossRef]

A. Zakery and A. Keshavarz, “Simulation of the incoherent interaction between two bright spatial photorefractive screening solitons in one and two dimensions,” J. Phys. D 37, 3409–3418 (2004).
[CrossRef]

2000 (2)

C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
[CrossRef]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

1999 (3)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999).
[CrossRef]

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

1998 (2)

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

Z. S. Sacks, D. Rozas, and G. A. Swartzlander, “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15, 2226–2234 (1998).
[CrossRef]

1997 (5)

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997).
[CrossRef]

M.-F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[CrossRef]

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

L. Torner and D. V. Petrov, “Splitting of light beams with spiral phase dislocations into solitons in bulk quadratic nonlinear media,” Electron. Lett. 33, 608 (1997).
[CrossRef]

1996 (1)

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[CrossRef]

1995 (1)

1993 (1)

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

1992 (1)

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[CrossRef]

1991 (1)

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[CrossRef]

’t Hooft, G. W.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

Alfano, R. R.

Andersen, D. R.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[CrossRef]

Arecchi, F. T.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011).
[CrossRef]

Balcou, P.

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

Belic, M. R.

A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999).
[CrossRef]

Bergé, L.

A. Vinçotte and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef]

Besuchanov, K.

Bongs, K.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Bortolozzo, U.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Buccoliero, D.

Burger, S.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Chen, Q.-F.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[CrossRef]

Christou, J.

Denz, C.

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

Desyatnikov, A. S.

Dettmer, S.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Dinev, S.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[CrossRef]

Dreischuh, A.

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Vortices in ultrashort laser pulses,” Appl. Phys. B 104, 561–567 (2011).
[CrossRef]

G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Optical vortices in self-focusing Kerr nonlinear media,” Opt. Commun. 282, 3349–3355 (2009).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Self-focusing and filamentation of optical vortex beams: spatiotemporal analysis,” Proc. SPIE 7501, 75010G (2009).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Nonlinear beam steering by fractional vortex dipoles,” Phys. Rev. A 80, 053828 (2009).
[CrossRef]

D. Neshev, A. Dreischuh, V. Shvedov, A. S. Desyatnikov, W. Królikowski, and Y. S. Kivshar, “Observation of polychromatic vortex solitons,” Opt. Lett. 33, 1851–1853 (2008).
[CrossRef]

K. Besuchanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, “Spatial phase dislocations in femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 26–35 (2006).
[CrossRef]

K. Besuchanov, A. Dreischuh, M. G. Schätzel, G. G. Paulus, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29, 1942–1944 (2004).
[CrossRef]

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[CrossRef]

Eliel, E. R.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

Ertmer, W.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Fadeyeva, T.

Fibich, G.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

Firth, W. J.

W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

Fließer, W.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

Gaeta, A. L.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a Raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
[CrossRef]

Grow, T. D.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

Guo, G.-C.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[CrossRef]

Hansinger, P.

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Vortices in ultrashort laser pulses,” Appl. Phys. B 104, 561–567 (2011).
[CrossRef]

G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Optical vortices in self-focusing Kerr nonlinear media,” Opt. Commun. 282, 3349–3355 (2009).
[CrossRef]

Ishaaya, A.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

Janicijevic, L.

Jiang, W.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[CrossRef]

Kaiser, F.

A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999).
[CrossRef]

Kamenov, V.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[CrossRef]

Kaplan, A. E.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[CrossRef]

Kartazaev, V.

Kern, C.

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
[CrossRef]

Keshavarz, A.

A. Zakery and A. Keshavarz, “Simulation of the incoherent interaction between two bright spatial photorefractive screening solitons in one and two dimensions,” J. Phys. D 37, 3409–3418 (2004).
[CrossRef]

Kivshar, Y.

Kivshar, Y. S.

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Królikowski, W.

L’Huillier, A.

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

Law, C. T.

Le, T.

Lenzini, F.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011).
[CrossRef]

Lewenstein, M.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Li, Ch.

Luther-Davies, B.

A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999).
[CrossRef]

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

V. Tikhonenko, J. Christou, and B. Luther-Davies, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
[CrossRef]

Maleshkov, G.

G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Nonlinear beam steering by fractional vortex dipoles,” Phys. Rev. A 80, 053828 (2009).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Self-focusing and filamentation of optical vortex beams: spatiotemporal analysis,” Proc. SPIE 7501, 75010G (2009).
[CrossRef]

Mariyenko, I. G.

Morita, R.

Neshev, D.

Neshev, D. N.

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Self-focusing and filamentation of optical vortex beams: spatiotemporal analysis,” Proc. SPIE 7501, 75010G (2009).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Nonlinear beam steering by fractional vortex dipoles,” Phys. Rev. A 80, 053828 (2009).
[CrossRef]

A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Królikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006).
[CrossRef]

Nie, Z.

Oka, K.

Paulus, G. G.

G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Vortices in ultrashort laser pulses,” Appl. Phys. B 104, 561–567 (2011).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Optical vortices in self-focusing Kerr nonlinear media,” Opt. Commun. 282, 3349–3355 (2009).
[CrossRef]

K. Besuchanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, “Spatial phase dislocations in femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 26–35 (2006).
[CrossRef]

K. Besuchanov, A. Dreischuh, M. G. Schätzel, G. G. Paulus, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29, 1942–1944 (2004).
[CrossRef]

Petrov, D. V.

L. Torner and D. V. Petrov, “Splitting of light beams with spiral phase dislocations into solitons in bulk quadratic nonlinear media,” Electron. Lett. 33, 608 (1997).
[CrossRef]

Regan, J. J.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[CrossRef]

Residori, S.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011).
[CrossRef]

Rozas, D.

Rudolph, W.

Sacks, Z. S.

Saffman, M.

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

Salamo, G.

M.-F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[CrossRef]

Sanpera, A.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Scarborough, T.

Schätzel, M. G.

Schwarz, A.

Segev, M.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

M.-F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[CrossRef]

Sengstock, K.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Shih, M.-F.

M.-F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[CrossRef]

Shlyapnikov, G. V.

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

Shvedov, V.

Si, J.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a Raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
[CrossRef]

W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

Spielmann, C.

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
[CrossRef]

Stefanov, I.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

Stepken, A.

A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999).
[CrossRef]

Strohaber, J.

Swartzlander, G. A.

Sztul, H. I.

Tikhonenko, V.

Tokizane, Y.

Topuzoski, S.

Torner, L.

L. Torner and D. V. Petrov, “Splitting of light beams with spiral phase dislocations into solitons in bulk quadratic nonlinear media,” Electron. Lett. 33, 608 (1997).
[CrossRef]

Uiterwaal, C. J. G. J.

Vinçotte, A.

A. Vinçotte and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef]

Volyar, A.

Vuong, L. T.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

Walther, H.

Wang, R.

Windholz, L.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

Xiao, M.

Yin, H.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[CrossRef]

Zakery, A.

A. Zakery and A. Keshavarz, “Simulation of the incoherent interaction between two bright spatial photorefractive screening solitons in one and two dimensions,” J. Phys. D 37, 3409–3418 (2004).
[CrossRef]

Zeylikovich, I.

Zhang, X.

Zhang, Y.

Zhang, Y.-S.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[CrossRef]

Zhao, Y.

Zürch, M.

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fließer, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[CrossRef]

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Vortices in ultrashort laser pulses,” Appl. Phys. B 104, 561–567 (2011).
[CrossRef]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[CrossRef]

Electron. Lett. (1)

L. Torner and D. V. Petrov, “Splitting of light beams with spiral phase dislocations into solitons in bulk quadratic nonlinear media,” Electron. Lett. 33, 608 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Phys. D (1)

A. Zakery and A. Keshavarz, “Simulation of the incoherent interaction between two bright spatial photorefractive screening solitons in one and two dimensions,” J. Phys. D 37, 3409–3418 (2004).
[CrossRef]

Nat. Phys. (1)

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann, “Strong-field physics with singular light beams,” Nat. Phys. 8, 743–746 (2012).
[CrossRef]

Opt. Commun. (1)

P. Hansinger, A. Dreischuh, and G. G. Paulus, “Optical vortices in self-focusing Kerr nonlinear media,” Opt. Commun. 282, 3349–3355 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Phys. Rev. A (3)

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Nonlinear beam steering by fractional vortex dipoles,” Phys. Rev. A 80, 053828 (2009).
[CrossRef]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Computation of topological charges of optical vortices via nondegenerate four-wave mixing,” Phys. Rev. A 74, 043811 (2006).
[CrossRef]

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84, 061801 (2011).
[CrossRef]

Phys. Rev. Lett. (11)

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583–1586 (1991).
[CrossRef]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[CrossRef]

A. L’Huillier and P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993).
[CrossRef]

W. J. Firth and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 133901 (2006).
[CrossRef]

A. Vinçotte and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a Raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
[CrossRef]

M.-F. Shih, M. Segev, and G. Salamo, “Three-dimensional spiraling of interacting spatial solitons,” Phys. Rev. Lett. 78, 2551–2554 (1997).
[CrossRef]

W. Królikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, “Dark solitons in Bose–Einstein condensates,” Phys. Rev. Lett. 83, 5198–5201 (1999).
[CrossRef]

A. Stepken, M. R. Belic, F. Kaiser, W. Królikowski, and B. Luther-Davies, “Three dimensional trajectories of interacting incoherent photorefractive solitons,” Phys. Rev. Lett. 82, 540–543 (1999).
[CrossRef]

Proc. SPIE (2)

G. Maleshkov, P. Hansinger, A. Dreischuh, and G. G. Paulus, “Fractional vortex dipoles of edge-screw type in self-focusing Kerr nonlinear media,” Proc. SPIE 7747, 77471P (2011).
[CrossRef]

G. Maleshkov, D. N. Neshev, and A. Dreischuh, “Self-focusing and filamentation of optical vortex beams: spatiotemporal analysis,” Proc. SPIE 7501, 75010G (2009).
[CrossRef]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[CrossRef]

Science (1)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup: B, Gaussian background beam illuminating the computer-generated hologram (CGH); D, diaphragm selecting the first-order diffracted beam; FL, focusing lens (f=3.5cm); SBN, biased photorefractive crystal with marked orientation of the c axis; horizontal arrow, beam’s polarization; IL and CCD, imaging lens and charge-coupled device camera, respectively, moving on a common translation stage to image the input or output facet of the crystal.

Fig. 2.
Fig. 2.

Upper row of frames: input beams (at z=0) and their numerically simulated reshaping at the exit of the photorefractive NLM (at z=2Ld, after weak self-focusing) for dark rings of initial normalized radii Δ/r0. The number below each frame is the background beam peak intensity at the respective propagation distance. Lower row of frames: experimental beam profiles recorded at the exit of the 6 mm long SBN crystal for the same initial values of Δ/r0. The number below each frame is the relative increase of the beam’s peak intensity at the exit facet of the crystal. The last column represents the nonlinear evolution of a pure Gaussian background beam.

Fig. 3.
Fig. 3.

Horizontal cross sections of some of the experimental frames shown in Fig. 2. The left graph is Δ/r0=1 and 2. The right graph is Δ/r0=5 and 6. The bias voltage is 300 V. The crystal illumination time is 240 s for Δ/r0=1 and 90 s in all other cases.

Fig. 4.
Fig. 4.

Left graph: initial (t=0) horizontal cross section of the Gaussian background beam at the output of the SBN crystal (solid curve) and the same after illumination time t=180s (dashed curve). Right graph: the same for the Gaussian background beam carrying two coaxial dark rings. The bias voltage is 300 V, and the beam power is 110 μW. Respective pairs of images: experimental frames from which the horizontal cross sections are extracted.

Fig. 5.
Fig. 5.

Initial (t=0, solid curves) and final (t=240s/120s, dashed curves) power density distributions of background beams carrying an optical vortex (upper row), a ring dark wave (middle row), and coaxial optical vortex and ring dark wave (lower row) at the exit of the SBN crystal. The dashed curves in the 2D graphs are extracted from the respective experimental frames shown to the right. For comparison, the corresponding numerical data are shown too. The bias voltage is 400 V, beam power is 80 μW, illumination time is t=120s for the single ring dark wave, and t=240s in the two other cases, in which an on-axis vortex is present. The experimental frames on the right are interferograms at the NLM exit of the weakly self-focused singular beams with a reference Gaussian beam with a spherical wavefront. Arrows are provided to guide the eye to local features of the interference patterns confirming the presence of spatial phase dislocations.

Fig. 6.
Fig. 6.

Input beams (at z=0) and their numerically simulated reshaping at the exit of the photorefractive NLM (at z=2Ld, after weak self-focusing) in the presence of both a singly charged on-axis vortex and an outer ring dark wave of varying radius Δ/r0. The number below each frame is the background beam peak intensity at the respective propagation distance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

iAjz+12(2x2+2y2)Ajγ(Esc+E0)Aj=0
2Φ+Φ·ln(1+I)=E0xln(1+I),
A1(x,y,z=0)=B(x,y)tanh[r(x,y)/r0]exp[iϕ(x,y)],
B(x,y)=B0exp{[(x2+y2)/w2]14}
A1(x,y,z=0)=B(r)tanh{|rΔ|/r0}exp[iψ(r)].

Metrics