Abstract

Fluoroaluminophosphate glasses with various content of metaphosphate Al(PO3)3 or dihydric phosphate Al(H2PO4)3 were prepared, respectively, to study the change in physical, chemical, and optical properties of glasses for 2.7 μm application. The glass forming ability, thermal ability, and structural properties were investigated along with the Judd–Ofelt parameters. Absorption and emission cross sections were discussed based on the absorption and emission spectra. The glass forming ability and chemical stability were enhanced by introducing metaphosphate [Al(PO3)3] or dihydric phosphate [Al(H2PO4)3] into the fluoroaluminate glass. The density decreased with the introduction of increased phosphate composition, while the refractive index increased. The absorption coefficient of OH at about 3 μm dropped noticeably when Al(PO3)3/Al(H2PO4)3 modified the fluoroaluminate glasses and an enhanced 2.7 μm emission was observed with an optimal content of phosphate composition. These results indicate that these fluoroaluminophosphate glasses with low metaphosphate Al(PO3)3 or dihydric phosphate Al(H2PO4)3 composition are promising candidates for 2.7 μm application.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu and R. Jain, “10  W- level diode-pumped compact 2.78  μm ZBLAN fiber laser,” Opt. Lett. 32, 26–28 (2007).
    [CrossRef]
  2. C. Guo, D. Shen, J. Long, and F. Wang, “High-power and widely tunable Tm-doped fiber laser at 2  μm,” Chin. Opt. Lett. 10, 091406 (2012).
    [CrossRef]
  3. B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
    [CrossRef]
  4. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
    [CrossRef]
  5. T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
    [CrossRef]
  6. Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
    [CrossRef]
  7. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011).
    [CrossRef]
  8. M. Saad, “Flouride glass fibers,” in Photonics Society Summer Topical Meeting Series (2011), pp. 81–82.
  9. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24  W mid-infrared Er ZBLAN fiber laser,” Opt. Lett. 34, 3062–3064 (2009).
    [CrossRef]
  10. X. Zhu and R. Jain, “Watt-level Er-doped and Er-Pr-codoped ZBLAN fiber amplifers at the 2.7–2.8  μm wavelength range,” Opt. Lett. 33, 1578–1580 (2008).
    [CrossRef]
  11. S. Takita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
    [CrossRef]
  12. G. H. Frischat, B. Hurber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glass in water,” J. Non-Cryst. Soilds 284, 105–109 (2001).
    [CrossRef]
  13. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010).
    [CrossRef]
  14. G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7  μm emission in Er3+-doped bismuth germanate glass pumped by 980  nm laser diode,” Chin. Opt. Lett. 10, 091601 (2012).
    [CrossRef]
  15. M. Naftaly, A. Jha, and E. R. Taylor, “Spectroscopic properties of Nd3+ in fluoroaluminate glasses for in 1.3  μm optical amplifier,” J. Non-Cryst. Soilds 256–257, 248–252 (1999).
    [CrossRef]
  16. J. L. Adam, N. Duhamel-Henry, and J. Y. Allain, “Blue and green up-conversion in (Yb3+, Tb3+) co-doped fluorophodphate glasses,” J. Non-Cryst. Solids 213–214, 245–250 (1997).
    [CrossRef]
  17. D. Dakui and M. Fuding, “Glass formation and crystallization in AlF3–YF3–BaF2–CaF2–MgF2,” J. Non-Cryst. Soilds 168, 275–280 (1994).
    [CrossRef]
  18. F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).
  19. M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
    [CrossRef]
  20. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2:7  μm emission from diode-pumped Er3+Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
    [CrossRef]
  21. R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Soilds 284, 55–60 (2001).
    [CrossRef]
  22. I. Yasui, H. Hagihara, and H. Inoue, “The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses,” J. Non-Cryst. Solids 140, 130–133 (1992).
    [CrossRef]
  23. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010).
    [CrossRef]
  24. R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
    [CrossRef]
  25. U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
    [CrossRef]
  26. X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
    [CrossRef]
  27. Y. Yan, A. J. Faber, and H. d. Waal, “Luminesence quenching by OH- groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
    [CrossRef]
  28. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+ codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
    [CrossRef]
  29. M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd-Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2 based glass,” J. Appl. Phys. 89, 4944–4950 (2001).
    [CrossRef]
  30. Y. Guo, M. Li, L. Hu, and J. Zhang, “Effect of fluorine ions on 2.7  μm emission in Er3+/Nd3+-codoped fluorotellurite glass,” J. Phys. Chem. 116, 5571–5576 (2012).
    [CrossRef]
  31. X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10, 101601 (2012).
    [CrossRef]
  32. H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhance mid-infrared emissions of Er3+ at 2.7  μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36, 1815–1817 (2011).
    [CrossRef]
  33. F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highy Er3+ doped ZrF4-based fluoride glasses for 2.7  μm laser materials,” Appl. Opt. 52, 1399–1403 (2013).
    [CrossRef]
  34. S. Xu, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Broadband 1.5  μm emission of erbium-doped TeO2-WO3-Nb2O5 glass for potential WDM amplifier,” Chin. Opt. Lett. 2, 106–108 (2004).
  35. T. Schweizer, D. W. Heward, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3  μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
    [CrossRef]
  36. S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  37. S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7  μm laser materials,” Chin. Opt. Lett. 10, 071603 (2012).
    [CrossRef]
  38. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
    [CrossRef]
  39. S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
    [CrossRef]

2014 (1)

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

2013 (3)

2012 (5)

2011 (8)

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2:7  μm emission from diode-pumped Er3+Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
[CrossRef]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+ codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
[CrossRef]

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhance mid-infrared emissions of Er3+ at 2.7  μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36, 1815–1817 (2011).
[CrossRef]

S. Takita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12  W Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Lett. 36, 2812–2814 (2011).
[CrossRef]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[CrossRef]

T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
[CrossRef]

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011).
[CrossRef]

2010 (2)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010).
[CrossRef]

2009 (2)

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
[CrossRef]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24  W mid-infrared Er ZBLAN fiber laser,” Opt. Lett. 34, 3062–3064 (2009).
[CrossRef]

2008 (1)

2007 (2)

X. Zhu and R. Jain, “10  W- level diode-pumped compact 2.78  μm ZBLAN fiber laser,” Opt. Lett. 32, 26–28 (2007).
[CrossRef]

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

2004 (1)

2001 (4)

G. H. Frischat, B. Hurber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glass in water,” J. Non-Cryst. Soilds 284, 105–109 (2001).
[CrossRef]

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
[CrossRef]

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd-Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2 based glass,” J. Appl. Phys. 89, 4944–4950 (2001).
[CrossRef]

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Soilds 284, 55–60 (2001).
[CrossRef]

1999 (1)

M. Naftaly, A. Jha, and E. R. Taylor, “Spectroscopic properties of Nd3+ in fluoroaluminate glasses for in 1.3  μm optical amplifier,” J. Non-Cryst. Soilds 256–257, 248–252 (1999).
[CrossRef]

1997 (1)

J. L. Adam, N. Duhamel-Henry, and J. Y. Allain, “Blue and green up-conversion in (Yb3+, Tb3+) co-doped fluorophodphate glasses,” J. Non-Cryst. Solids 213–214, 245–250 (1997).
[CrossRef]

1996 (2)

S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
[CrossRef]

T. Schweizer, D. W. Heward, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8, 2.9, and 4.3  μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996).
[CrossRef]

1995 (2)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

Y. Yan, A. J. Faber, and H. d. Waal, “Luminesence quenching by OH- groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

1994 (1)

D. Dakui and M. Fuding, “Glass formation and crystallization in AlF3–YF3–BaF2–CaF2–MgF2,” J. Non-Cryst. Soilds 168, 275–280 (1994).
[CrossRef]

1992 (2)

I. Yasui, H. Hagihara, and H. Inoue, “The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses,” J. Non-Cryst. Solids 140, 130–133 (1992).
[CrossRef]

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Adam, J. L.

J. L. Adam, N. Duhamel-Henry, and J. Y. Allain, “Blue and green up-conversion in (Yb3+, Tb3+) co-doped fluorophodphate glasses,” J. Non-Cryst. Solids 213–214, 245–250 (1997).
[CrossRef]

Allain, J. Y.

J. L. Adam, N. Duhamel-Henry, and J. Y. Allain, “Blue and green up-conversion in (Yb3+, Tb3+) co-doped fluorophodphate glasses,” J. Non-Cryst. Solids 213–214, 245–250 (1997).
[CrossRef]

Auzel, F.

S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
[CrossRef]

Bailey, C.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Blinks, D.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
[CrossRef]

Brzezinka, K.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Chase, L.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Chen, D.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhance mid-infrared emissions of Er3+ at 2.7  μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36, 1815–1817 (2011).
[CrossRef]

Dai, S.

Dakui, D.

D. Dakui and M. Fuding, “Glass formation and crystallization in AlF3–YF3–BaF2–CaF2–MgF2,” J. Non-Cryst. Soilds 168, 275–280 (1994).
[CrossRef]

Dickinson, B. C.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
[CrossRef]

Dubinskii, M.

T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
[CrossRef]

Duhamel-Henry, N.

J. L. Adam, N. Duhamel-Henry, and J. Y. Allain, “Blue and green up-conversion in (Yb3+, Tb3+) co-doped fluorophodphate glasses,” J. Non-Cryst. Solids 213–214, 245–250 (1997).
[CrossRef]

Faber, A. J.

Y. Yan, A. J. Faber, and H. d. Waal, “Luminesence quenching by OH- groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

Fan, H.

Fan, S.

Frischat, G. H.

G. H. Frischat, B. Hurber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glass in water,” J. Non-Cryst. Soilds 284, 105–109 (2001).
[CrossRef]

Fuding, M.

D. Dakui and M. Fuding, “Glass formation and crystallization in AlF3–YF3–BaF2–CaF2–MgF2,” J. Non-Cryst. Soilds 168, 275–280 (1994).
[CrossRef]

Golding, P. S.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
[CrossRef]

Gross, U.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Guan, S.

Guo, C.

Guo, Y.

F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highy Er3+ doped ZrF4-based fluoride glasses for 2.7  μm laser materials,” Appl. Opt. 52, 1399–1403 (2013).
[CrossRef]

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7  μm laser materials,” Chin. Opt. Lett. 10, 071603 (2012).
[CrossRef]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Effect of fluorine ions on 2.7  μm emission in Er3+/Nd3+-codoped fluorotellurite glass,” J. Phys. Chem. 116, 5571–5576 (2012).
[CrossRef]

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Hagihara, H.

I. Yasui, H. Hagihara, and H. Inoue, “The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses,” J. Non-Cryst. Solids 140, 130–133 (1992).
[CrossRef]

Harrision, N.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Hashida, M.

Hernandes, A. C.

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Soilds 284, 55–60 (2001).
[CrossRef]

Heward, D. W.

Hu, L.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
[CrossRef]

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7  μm laser materials,” Chin. Opt. Lett. 10, 071603 (2012).
[CrossRef]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Effect of fluorine ions on 2.7  μm emission in Er3+/Nd3+-codoped fluorotellurite glass,” J. Phys. Chem. 116, 5571–5576 (2012).
[CrossRef]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7  μm emission in Er3+-doped bismuth germanate glass pumped by 980  nm laser diode,” Chin. Opt. Lett. 10, 091601 (2012).
[CrossRef]

X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10, 101601 (2012).
[CrossRef]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[CrossRef]

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2:7  μm emission from diode-pumped Er3+Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
[CrossRef]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+ codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010).
[CrossRef]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
[CrossRef]

S. Xu, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Broadband 1.5  μm emission of erbium-doped TeO2-WO3-Nb2O5 glass for potential WDM amplifier,” Chin. Opt. Lett. 2, 106–108 (2004).

Huang, F.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highy Er3+ doped ZrF4-based fluoride glasses for 2.7  μm laser materials,” Appl. Opt. 52, 1399–1403 (2013).
[CrossRef]

Huber, G.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

Hubert, S.

S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
[CrossRef]

Hurber, B.

G. H. Frischat, B. Hurber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glass in water,” J. Non-Cryst. Soilds 284, 105–109 (2001).
[CrossRef]

Inoue, H.

I. Yasui, H. Hagihara, and H. Inoue, “The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses,” J. Non-Cryst. Solids 140, 130–133 (1992).
[CrossRef]

Jackson, S. D.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
[CrossRef]

Jain, R.

Jha, A.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
[CrossRef]

M. Naftaly, A. Jha, and E. R. Taylor, “Spectroscopic properties of Nd3+ in fluoroaluminate glasses for in 1.3  μm optical amplifier,” J. Non-Cryst. Soilds 256–257, 248–252 (1999).
[CrossRef]

Jiang, Z.

Jose, G.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
[CrossRef]

Kadono, K.

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd-Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2 based glass,” J. Appl. Phys. 89, 4944–4950 (2001).
[CrossRef]

Kanskar, M.

T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
[CrossRef]

Kawamoto, Y.

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd-Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2 based glass,” J. Appl. Phys. 89, 4944–4950 (2001).
[CrossRef]

Kedlaya, D.

T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
[CrossRef]

Keminitz, E.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

King, T. A.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
[CrossRef]

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

Krupke, W.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kway, W.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Lebullenger, R.

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Soilds 284, 55–60 (2001).
[CrossRef]

Li, K.

Li, M.

Y. Guo, M. Li, L. Hu, and J. Zhang, “Effect of fluorine ions on 2.7  μm emission in Er3+/Nd3+-codoped fluorotellurite glass,” J. Phys. Chem. 116, 5571–5576 (2012).
[CrossRef]

Li, W.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

Li, X.

Lin, H.

Ling, M.

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Liu, X.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
[CrossRef]

Long, J.

Lumin, J.

S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
[CrossRef]

Ma, Y.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highy Er3+ doped ZrF4-based fluoride glasses for 2.7  μm laser materials,” Appl. Opt. 52, 1399–1403 (2013).
[CrossRef]

Meichenin, D.

S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
[CrossRef]

Mukhopadhyay, S.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Murakami, M.

Naftaly, M.

M. Naftaly, A. Jha, and E. R. Taylor, “Spectroscopic properties of Nd3+ in fluoroaluminate glasses for in 1.3  μm optical amplifier,” J. Non-Cryst. Soilds 256–257, 248–252 (1999).
[CrossRef]

Nunes, L. A. O.

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Soilds 284, 55–60 (2001).
[CrossRef]

Payne, D. N.

Payne, S.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010).
[CrossRef]

Pollnau, M.

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
[CrossRef]

Ramdohr, B.

G. H. Frischat, B. Hurber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glass in water,” J. Non-Cryst. Soilds 284, 105–109 (2001).
[CrossRef]

Richards, B. D. O.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
[CrossRef]

Riidiger, S.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Saad, M.

M. Saad, “Flouride glass fibers,” in Photonics Society Summer Topical Meeting Series (2011), pp. 81–82.

Sakabe, S.

Samson, B. N.

Sanamyan, T.

T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
[CrossRef]

Schweizer, T.

Shen, D.

Shimizu, S.

Shojiya, M.

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd-Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2 based glass,” J. Appl. Phys. 89, 4944–4950 (2001).
[CrossRef]

Smith, L.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Takita, S.

Taylor, E. R.

M. Naftaly, A. Jha, and E. R. Taylor, “Spectroscopic properties of Nd3+ in fluoroaluminate glasses for in 1.3  μm optical amplifier,” J. Non-Cryst. Soilds 256–257, 248–252 (1999).
[CrossRef]

Teddy-Fernandez, T.

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
[CrossRef]

Tian, Y.

X. Wang, L. Hu, K. Li, Y. Tian, and S. Fan, “Spectroscopic properties of thulium ions in bismuth silicate glass,” Chin. Opt. Lett. 10, 101601 (2012).
[CrossRef]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7  μm emission in Er3+-doped bismuth germanate glass pumped by 980  nm laser diode,” Chin. Opt. Lett. 10, 091601 (2012).
[CrossRef]

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7  μm laser materials,” Chin. Opt. Lett. 10, 071603 (2012).
[CrossRef]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+ codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011).
[CrossRef]

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2:7  μm emission from diode-pumped Er3+Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
[CrossRef]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010).
[CrossRef]

Tokita, S.

Waal, H. d.

Y. Yan, A. J. Faber, and H. d. Waal, “Luminesence quenching by OH- groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

Wander, A.

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Wang, F.

Wang, G.

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
[CrossRef]

Wang, M.

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[CrossRef]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
[CrossRef]

Wang, X.

Wang, Y.

Xiao, Y.

T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
[CrossRef]

Xu, R.

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011).
[CrossRef]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+ codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
[CrossRef]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2:7  μm emission from diode-pumped Er3+Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
[CrossRef]

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010).
[CrossRef]

Xu, S.

Yan, Y.

Y. Yan, A. J. Faber, and H. d. Waal, “Luminesence quenching by OH- groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

Yang, A.

Yasui, I.

I. Yasui, H. Hagihara, and H. Inoue, “The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses,” J. Non-Cryst. Solids 140, 130–133 (1992).
[CrossRef]

Yi, L.

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
[CrossRef]

Yu, Y.

Zhang, J.

F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, “Highy Er3+ doped ZrF4-based fluoride glasses for 2.7  μm laser materials,” Appl. Opt. 52, 1399–1403 (2013).
[CrossRef]

X. Li, X. Liu, L. Zhang, L. Hu, and J. Zhang, “Emission enhancement in Er3+/Pr3+-codoped germanate glasses and their use as a 2.7  μm laser material,” Chin. Opt. Lett. 11, 121601 (2013).
[CrossRef]

S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer processes in Er3+/Nd3+ co-doped tellurite glass for 2.7  μm laser materials,” Chin. Opt. Lett. 10, 071603 (2012).
[CrossRef]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Effect of fluorine ions on 2.7  μm emission in Er3+/Nd3+-codoped fluorotellurite glass,” J. Phys. Chem. 116, 5571–5576 (2012).
[CrossRef]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7  μm emission in Er3+-doped bismuth germanate glass pumped by 980  nm laser diode,” Chin. Opt. Lett. 10, 091601 (2012).
[CrossRef]

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2:7  μm emission from diode-pumped Er3+Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
[CrossRef]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[CrossRef]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+ codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011).
[CrossRef]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010).
[CrossRef]

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
[CrossRef]

S. Xu, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Broadband 1.5  μm emission of erbium-doped TeO2-WO3-Nb2O5 glass for potential WDM amplifier,” Chin. Opt. Lett. 2, 106–108 (2004).

Zhang, L.

Zhao, G.

Zhou, B. W.

S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
[CrossRef]

Zhu, X.

Adv. OptoElectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. OptoElectron. 2010, 1–23 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

Chin. Opt. Lett. (6)

IEEE J. Quantum Electron. (1)

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared Cross–section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

J. Am. Ceram. Soc. (1)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission from Er3+/Tm3+/Pr3+ triply doped fluoride glass,” J. Am. Ceram. Soc. 94, 2289–2291 (2011).
[CrossRef]

J. Appl. Phys. (3)

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “1.8  μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010).
[CrossRef]

R. Xu, M. Wang, Y. Tian, L. Hu, and J. Zhang, “2.05  μm emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+,” J. Appl. Phys. 109, 053503 (2011).
[CrossRef]

M. Shojiya, Y. Kawamoto, and K. Kadono, “Judd-Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2 based glass,” J. Appl. Phys. 89, 4944–4950 (2001).
[CrossRef]

J. Non-Cryst. Soilds (4)

R. Lebullenger, L. A. O. Nunes, and A. C. Hernandes, “Properties of glasses from fluoride to phosphate composition,” J. Non-Cryst. Soilds 284, 55–60 (2001).
[CrossRef]

G. H. Frischat, B. Hurber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glass in water,” J. Non-Cryst. Soilds 284, 105–109 (2001).
[CrossRef]

M. Naftaly, A. Jha, and E. R. Taylor, “Spectroscopic properties of Nd3+ in fluoroaluminate glasses for in 1.3  μm optical amplifier,” J. Non-Cryst. Soilds 256–257, 248–252 (1999).
[CrossRef]

D. Dakui and M. Fuding, “Glass formation and crystallization in AlF3–YF3–BaF2–CaF2–MgF2,” J. Non-Cryst. Soilds 168, 275–280 (1994).
[CrossRef]

J. Non-Cryst. Solids (3)

J. L. Adam, N. Duhamel-Henry, and J. Y. Allain, “Blue and green up-conversion in (Yb3+, Tb3+) co-doped fluorophodphate glasses,” J. Non-Cryst. Solids 213–214, 245–250 (1997).
[CrossRef]

Y. Yan, A. J. Faber, and H. d. Waal, “Luminesence quenching by OH- groups in highly Er-doped phosphate glasses,” J. Non-Cryst. Solids 181, 283–290 (1995).
[CrossRef]

I. Yasui, H. Hagihara, and H. Inoue, “The effect of addition of oxides on the crystallization behavior of aluminum fluoride-based glasses,” J. Non-Cryst. Solids 140, 130–133 (1992).
[CrossRef]

J. Phys. Chem. (1)

Y. Guo, M. Li, L. Hu, and J. Zhang, “Effect of fluorine ions on 2.7  μm emission in Er3+/Nd3+-codoped fluorotellurite glass,” J. Phys. Chem. 116, 5571–5576 (2012).
[CrossRef]

J. Phys. Chem. A (1)

U. Gross, S. Riidiger, E. Keminitz, K. Brzezinka, S. Mukhopadhyay, C. Bailey, A. Wander, and N. Harrision, “Vibrational analysis study of aluminum trifluoride glass,” J. Phys. Chem. A 111, 5813–5819 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Guo, M. Ling, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7  μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” Jpn. J. Appl. Phys. 110, 013512 (2011).
[CrossRef]

Laser Phys. Lett. (1)

B. D. O. Richards, T. Teddy-Fernandez, G. Jose, D. Blinks, and A. Jha, “Mid-IR (3–4  μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
[CrossRef]

Opt. Commun. (1)

B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791  nm pulsed-pumped 2.7  μm Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001).
[CrossRef]

Opt. Lett. (8)

Opt. Mater. (1)

S. Hubert, D. Meichenin, B. W. Zhou, F. Auzel, and J. Lumin, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121–127 (1996).
[CrossRef]

Opt. Mater. Express (1)

T. Sanamyan, M. Kanskar, Y. Xiao, D. Kedlaya, and M. Dubinskii, “High power diode-pumped 2.7  μm Er3+: Y2O3 laser with nearly quantum defect-limited efficiency,” Opt. Mater. Express 19, A1082–A1087 (2011).
[CrossRef]

Sci. Rep. (1)

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7  μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3607–3612 (2014).

Solid State Commun. (1)

M. Wang, L. Yi, G. Wang, L. Hu, and J. Zhang, “2  μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800  nm excitation,” Solid State Commun. 149, 1216–12202009).
[CrossRef]

Other (1)

M. Saad, “Flouride glass fibers,” in Photonics Society Summer Topical Meeting Series (2011), pp. 81–82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

XRD patterns of FE, FPX5, FPX7, FPY5 and FPY7 samples.

Fig. 2.
Fig. 2.

DSC results of the samples. (a)  T g , T x , and Δ T of the FE and FPX samples, (b)  T g , T x , and Δ T of the FE and FPY samples, and (c) the values of H r criterion depend on the content of Al ( PO 3 ) 3 and Al ( H 2 PO 4 ) 3 .

Fig. 3.
Fig. 3.

FTIR spectra in the 400 1600 cm 1 range of samples glasses in K Br pellets. (a) Spectra of the FE and FPX glasses. (b) Spectra of FPX3, FPY3, and FPXY3 glasses.

Fig. 4.
Fig. 4.

Transmittance spectra and absorption coefficient of OH curves of the FE sample and FP samples with 1 mol. % Al ( PO 3 ) 3 or Al ( H 2 PO 4 ) 3 .

Fig. 5.
Fig. 5.

Absorption spectra in the wavelength region of 200–1200 nm of the FE sample and FP samples with 1 mol. % Al ( PO 3 ) 3 or Al ( H 2 PO 4 ) 3 .

Fig. 6.
Fig. 6.

(a) 2.7 μm emission spectra of the FE sample and FP samples with 1 mol. % Al ( PO 3 ) 3 or Al ( H 2 PO 4 ) 3 . (b) Energy-level diagrams and energy-transfer sketch map. (c) Intensities of 2.7 μm emission depending on the content of phosphate composition. (d) 2.7 μm emission spectra of FP samples with 3 mol. % phosphate respectively.

Fig. 7.
Fig. 7.

Emission cross section in the wavelength of 2550–2850 nm of the FE sample and FP samples with 1 mol. % Al ( PO 3 ) 3 or Al ( H 2 PO 4 ) 3 . The inset shows the absorption cross section of the samples.

Tables (2)

Tables Icon

Table 1. Density and Refractive Index of the Samples

Tables Icon

Table 2. J–O Parameters Ω t , Predicted Spontaneous Transition Probability (A), and Branching Ratio (B) of Present Glasses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α OH = ln ( T / T 0 ) / 1 ,
S ed ( 4 I 112 4 I 13 / 2 ) = U ( 2 ) * Ω 2 + U ( 4 ) * Ω 4 + U ( 6 ) * Ω 6 = 0.0 21 Ω 2 + 0.11 Ω 4 + 1.0 4 Ω 6 .
σ e = λ 4 A rad 8 π c n 2 × λ I ( λ ) λ I ( λ ) d λ ,
σ abs ( λ ) = σ em ( λ ) × ( Z u Z l ) exp [ ( E z l h c λ 1 ) K B T ] ,

Metrics