Abstract

We investigate the thermal influence of fibers on the dynamics of bipartite and multipartite correlations in fiber coupled cavity arrays where each cavity is resonantly coupled to a two-level atom. The atom-cavity systems connected by fibers can be considered as polaritonic qubits. We first derive a master equation to describe the evolution of the atom-cavity systems. The bipartite (multipartite) correlations are measured by concurrence and discord (spin squeezing). Then, we solve the master equation numerically and study the thermal effects on the concurrence, discord, and spin squeezing of the qubits. On the one hand, at zero temperature, there are steady state bipartite and multipartite correlations. On the other hand, the thermal fluctuations of a fiber may block the generation of entanglement of two qubits connected directly by the fiber, while the discord can be generated and stored for a long time. This thermal-induced blockade effects of bipartite correlations may be useful for quantum information processing. The bipartite correlations of a longer chain of qubits is more robust than a shorter one in the presence of thermal fluctuations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2007).
  3. T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
    [CrossRef]
  4. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science (London) 323, 598–601 (2009).
    [CrossRef]
  5. A. R. P. Rau, M. Ali, and G. Alber, “Hastening, delaying, or averting sudden death of quantum entanglement,” Europhys. Lett. 82, 40002 (2008).
    [CrossRef]
  6. Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996).
    [CrossRef]
  7. Y. Wu, X. Yang, and Y. Xiao, “Analytical method for Yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200 (2001).
    [CrossRef]
  8. J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283–288 (2009).
    [CrossRef]
  9. J. S. Zhang, A. X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” J. Phys. B 43, 025501 (2010).
  10. J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).
  11. C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
    [CrossRef]
  12. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
    [CrossRef]
  13. J. Niset and N. J. Cerf, “Multipartite nonlocality without entanglement in many dimensions,” Phys. Rev. A 74, 052103 (2006).
    [CrossRef]
  14. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
    [CrossRef]
  15. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
    [CrossRef]
  16. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
    [CrossRef]
  17. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
    [CrossRef]
  18. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014 (2000).
    [CrossRef]
  19. A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
    [CrossRef]
  20. A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
    [CrossRef]
  21. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
    [CrossRef]
  22. R. Dillenschneider, “Quantum discord and quantum phase transition in spin chains,” Phys. Rev. B 78, 224413 (2008).
  23. M. S. Sarandy, “Classical correlation and quantum discord in critical systems,” Phys. Rev. A 80, 022108 (2009).
    [CrossRef]
  24. J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A 43, 045305 (2010).
  25. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
    [CrossRef]
  26. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
    [CrossRef]
  27. A. Auyuanet and L. Davidovich, “Quantum correlations as precursors of entanglement,” Phys. Rev. A 82, 032112 (2010).
    [CrossRef]
  28. Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
    [CrossRef]
  29. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
    [CrossRef]
  30. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [CrossRef]
  31. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007).
    [CrossRef]
  32. J. Li, J. Zou, and B. Shao, “Quantum information processing in an array of fiber coupled cavities,” Commun. Theor. Phys. 53, 764–770 (2010).
    [CrossRef]
  33. R. O. Umucalalar and I. Carusotto, “Fractional quantum Hall states of photons in an array of dissipative coupled cavities,” Phys. Rev. Lett. 108, 206809 (2012).
    [CrossRef]
  34. F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
    [CrossRef]
  35. I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
    [CrossRef]
  36. J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
    [CrossRef]
  37. K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013).
    [CrossRef]
  38. L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011).
    [CrossRef]
  39. D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
    [CrossRef]
  40. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  41. M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993).
    [CrossRef]
  42. J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
    [CrossRef]
  43. Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
    [CrossRef]
  44. M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

2013 (2)

J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
[CrossRef]

K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013).
[CrossRef]

2012 (5)

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
[CrossRef]

R. O. Umucalalar and I. Carusotto, “Fractional quantum Hall states of photons in an array of dissipative coupled cavities,” Phys. Rev. Lett. 108, 206809 (2012).
[CrossRef]

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

2011 (2)

J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[CrossRef]

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011).
[CrossRef]

2010 (6)

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A 43, 045305 (2010).

J. Li, J. Zou, and B. Shao, “Quantum information processing in an array of fiber coupled cavities,” Commun. Theor. Phys. 53, 764–770 (2010).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

A. Auyuanet and L. Davidovich, “Quantum correlations as precursors of entanglement,” Phys. Rev. A 82, 032112 (2010).
[CrossRef]

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

J. S. Zhang, A. X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” J. Phys. B 43, 025501 (2010).

2009 (5)

J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283–288 (2009).
[CrossRef]

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science (London) 323, 598–601 (2009).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

M. S. Sarandy, “Classical correlation and quantum discord in critical systems,” Phys. Rev. A 80, 022108 (2009).
[CrossRef]

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

2008 (5)

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

R. Dillenschneider, “Quantum discord and quantum phase transition in spin chains,” Phys. Rev. B 78, 224413 (2008).

A. R. P. Rau, M. Ali, and G. Alber, “Hastening, delaying, or averting sudden death of quantum entanglement,” Europhys. Lett. 82, 40002 (2008).
[CrossRef]

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

2007 (2)

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[CrossRef]

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007).
[CrossRef]

2006 (2)

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

J. Niset and N. J. Cerf, “Multipartite nonlocality without entanglement in many dimensions,” Phys. Rev. A 74, 052103 (2006).
[CrossRef]

2005 (2)

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

2004 (1)

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

2002 (1)

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

2001 (2)

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for Yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200 (2001).
[CrossRef]

2000 (1)

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014 (2000).
[CrossRef]

1999 (2)

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1996 (1)

Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996).
[CrossRef]

1993 (1)

M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993).
[CrossRef]

Abdel-Aty, M.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).

J. S. Zhang, A. X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” J. Phys. B 43, 025501 (2010).

Alber, G.

A. R. P. Rau, M. Ali, and G. Alber, “Hastening, delaying, or averting sudden death of quantum entanglement,” Europhys. Lett. 82, 40002 (2008).
[CrossRef]

Ali, M.

A. R. P. Rau, M. Ali, and G. Alber, “Hastening, delaying, or averting sudden death of quantum entanglement,” Europhys. Lett. 82, 40002 (2008).
[CrossRef]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Alodjants, A. P.

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

Angelakis, D. G.

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007).
[CrossRef]

Arakelian, S. M.

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

Auyuanet, A.

A. Auyuanet and L. Davidovich, “Quantum correlations as precursors of entanglement,” Phys. Rev. A 82, 032112 (2010).
[CrossRef]

Barbieri, M.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Bennett, C. H.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

Biondi, M.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

Blatter, G.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

Bose, S.

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Braunstein, S. L.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Breuer, H. P.

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2007).

Brodutch, A.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
[CrossRef]

Cable, H.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
[CrossRef]

Carusotto, I.

R. O. Umucalalar and I. Carusotto, “Fractional quantum Hall states of photons in an array of dissipative coupled cavities,” Phys. Rev. Lett. 108, 206809 (2012).
[CrossRef]

Caves, C. M.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Cerf, N. J.

J. Niset and N. J. Cerf, “Multipartite nonlocality without entanglement in many dimensions,” Phys. Rev. A 74, 052103 (2006).
[CrossRef]

Chen, A. X.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).

J. S. Zhang, A. X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” J. Phys. B 43, 025501 (2010).

Chen, I. H.

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

Chen, L.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).

Chen, Z. Q.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cui, J.

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A 43, 045305 (2010).

Datta, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[CrossRef]

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

Davidovich, L.

A. Auyuanet and L. Davidovich, “Quantum correlations as precursors of entanglement,” Phys. Rev. A 82, 032112 (2010).
[CrossRef]

Dillenschneider, R.

R. Dillenschneider, “Quantum discord and quantum phase transition in spin chains,” Phys. Rev. B 78, 224413 (2008).

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

Du, G. H.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Eberly, J. H.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science (London) 323, 598–601 (2009).
[CrossRef]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

Fan, H.

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A 43, 045305 (2010).

Fanchini, F. F.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Fazio, R.

J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
[CrossRef]

Feng, M.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Ficek, Z.

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

Flammia, S. T.

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

Fuchs, C. A.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

Hartmann, M. J.

J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
[CrossRef]

Henderson, L.

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

Horodecki, M.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Horodecki, P.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Horodecki, R.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Jin, J.

J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
[CrossRef]

Jozsa, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Kamide, K.

K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013).
[CrossRef]

Keeling, J.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

Kimura, T.

K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013).
[CrossRef]

Kitagawa, M.

M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993).
[CrossRef]

Lai, Y. C.

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Lee, R. K.

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

Leib, M.

J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
[CrossRef]

Li, H. N.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Li, J.

J. Li, J. Zou, and B. Shao, “Quantum information processing in an array of fiber coupled cavities,” Commun. Theor. Phys. 53, 764–770 (2010).
[CrossRef]

Li, L.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Li, N.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Lin, Q.

J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283–288 (2009).
[CrossRef]

Lin, Y. Y.

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

Linden, N.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Liu, J. W.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Luo, B.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Ma, J.

J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[CrossRef]

Mancini, S.

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011).
[CrossRef]

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Memarzadeh, L.

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011).
[CrossRef]

Meyer, D. A.

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014 (2000).
[CrossRef]

Modi, K.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
[CrossRef]

Mor, T.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Niset, J.

J. Niset and N. J. Cerf, “Multipartite nonlocality without entanglement in many dimensions,” Phys. Rev. A 74, 052103 (2006).
[CrossRef]

Nissen, F.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

Nori, F.

J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[CrossRef]

Ogawa, T.

K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013).
[CrossRef]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

Oppenheim, J.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Paterek, T.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
[CrossRef]

Petruccione, F.

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2007).

Popescu, S.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Rains, E.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

Rau, A. R. P.

A. R. P. Rau, M. Ali, and G. Alber, “Hastening, delaying, or averting sudden death of quantum entanglement,” Europhys. Lett. 82, 40002 (2008).
[CrossRef]

Rossini, D.

J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
[CrossRef]

Santos, M. F.

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007).
[CrossRef]

Sarandy, M. S.

M. S. Sarandy, “Classical correlation and quantum discord in critical systems,” Phys. Rev. A 80, 022108 (2009).
[CrossRef]

Schack, R.

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

Schmidt, S.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

Scully, M.

M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Sedov, E. S.

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

Sen, A.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Sen, U.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Shaji, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

Shao, B.

J. Li, J. Zou, and B. Shao, “Quantum information processing in an array of fiber coupled cavities,” Commun. Theor. Phys. 53, 764–770 (2010).
[CrossRef]

Shor, P. W.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

Souza, S.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Sun, C. P.

J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[CrossRef]

Sun, Z. Y.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Synak-Radtke, B.

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

Tanas, R.

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

Tureci, H. E.

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

Ueda, M.

M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993).
[CrossRef]

Umucalalar, R. O.

R. O. Umucalalar and I. Carusotto, “Fractional quantum Hall states of photons in an array of dissipative coupled cavities,” Phys. Rev. Lett. 108, 206809 (2012).
[CrossRef]

Vedral, V.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
[CrossRef]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

Vidal, G.

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[CrossRef]

Villas Boas, C. J.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

Wang, B.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Wang, X.

J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[CrossRef]

Werlang, T.

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

Wootters, W. K.

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Wu, Y.

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for Yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200 (2001).
[CrossRef]

Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996).
[CrossRef]

Xiao, Y.

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for Yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200 (2001).
[CrossRef]

Xu, J. B.

J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283–288 (2009).
[CrossRef]

Xu, Z. Y.

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

Yamaguchi, M.

K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013).
[CrossRef]

Yang, X.

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for Yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200 (2001).
[CrossRef]

Yao, K. L.

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

Yu, T.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science (London) 323, 598–601 (2009).
[CrossRef]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

Zhang, J. S.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).

J. S. Zhang, A. X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” J. Phys. B 43, 025501 (2010).

J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283–288 (2009).
[CrossRef]

Zou, J.

J. Li, J. Zou, and B. Shao, “Quantum information processing in an array of fiber coupled cavities,” Commun. Theor. Phys. 53, 764–770 (2010).
[CrossRef]

Zubairy, M. S.

M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

Commun. Theor. Phys. (1)

J. Li, J. Zou, and B. Shao, “Quantum information processing in an array of fiber coupled cavities,” Commun. Theor. Phys. 53, 764–770 (2010).
[CrossRef]

Eur. Phys. J. D (2)

J. S. Zhang, J. B. Xu, and Q. Lin, “Controlling entanglement sudden death in cavity QED by classical driving fields,” Eur. Phys. J. D 51, 283–288 (2009).
[CrossRef]

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66:2 (2012).

Europhys. Lett. (2)

A. R. P. Rau, M. Ali, and G. Alber, “Hastening, delaying, or averting sudden death of quantum entanglement,” Europhys. Lett. 82, 40002 (2008).
[CrossRef]

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

J. Phys. A (2)

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001).
[CrossRef]

J. Cui and H. Fan, “Correlations in the Grover search,” J. Phys. A 43, 045305 (2010).

J. Phys. B (1)

J. S. Zhang, A. X. Chen, and M. Abdel-Aty, “Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement,” J. Phys. B 43, 025501 (2010).

Phys. Rep. (1)

J. Ma, X. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[CrossRef]

Phys. Rev. A (17)

Z. Ficek and R. Tanas, “Delayed sudden birth of entanglement,” Phys. Rev. A 77, 054301 (2008).
[CrossRef]

M. Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138–5143 (1993).
[CrossRef]

Y. Wu, “Simple algebraic method to solve a coupled-channel cavity QED model,” Phys. Rev. A 54, 4534–4543 (1996).
[CrossRef]

A. Datta, S. T. Flammia, and C. M. Caves, “Entanglement and the power of one qubit,” Phys. Rev. A 72, 042316 (2005).
[CrossRef]

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, “Quantum nonlocality without entanglement,” Phys. Rev. A 59, 1070–1091 (1999).
[CrossRef]

M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: formalism and phenomena,” Phys. Rev. A 71, 062307 (2005).
[CrossRef]

J. Niset and N. J. Cerf, “Multipartite nonlocality without entanglement in many dimensions,” Phys. Rev. A 74, 052103 (2006).
[CrossRef]

B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010).
[CrossRef]

A. Auyuanet and L. Davidovich, “Quantum correlations as precursors of entanglement,” Phys. Rev. A 82, 032112 (2010).
[CrossRef]

Z. Y. Sun, L. Li, K. L. Yao, G. H. Du, J. W. Liu, B. Luo, N. Li, and H. N. Li, “Quantum discord in matrix product systems,” Phys. Rev. A 82, 032310 (2010).
[CrossRef]

T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009).
[CrossRef]

M. S. Sarandy, “Classical correlation and quantum discord in critical systems,” Phys. Rev. A 80, 022108 (2009).
[CrossRef]

D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007).
[CrossRef]

I. H. Chen, Y. Y. Lin, Y. C. Lai, E. S. Sedov, A. P. Alodjants, S. M. Arakelian, and R. K. Lee, “Solitons in cavity-QED arrays containing interacting qubits,” Phys. Rev. A 86, 023829 (2012).
[CrossRef]

K. Kamide, M. Yamaguchi, T. Kimura, and T. Ogawa, “First-order superfluid-Mott-insulator transition for quantum‘-optical switching in cavity-QED arrays with two cavity modes,” Phys. Rev. A 87, 053842 (2013).
[CrossRef]

L. Memarzadeh and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011).
[CrossRef]

Phys. Rev. B (1)

R. Dillenschneider, “Quantum discord and quantum phase transition in spin chains,” Phys. Rev. B 78, 224413 (2008).

Phys. Rev. Lett. (12)

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002).
[CrossRef]

B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann, “Photon solid phases in driven arrays of nonlinearly coupled cavities,” Phys. Rev. Lett. 110, 163605 (2013).
[CrossRef]

R. O. Umucalalar and I. Carusotto, “Fractional quantum Hall states of photons in an array of dissipative coupled cavities,” Phys. Rev. Lett. 108, 206809 (2012).
[CrossRef]

F. Nissen, S. Schmidt, M. Biondi, G. Blatter, H. E. Tureci, and J. Keeling, “Nonequilibrium dynamics of coupled qubit-cavity arrays,” Phys. Rev. Lett. 108, 233603 (2012).
[CrossRef]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[CrossRef]

S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999).
[CrossRef]

D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014 (2000).
[CrossRef]

Y. Wu, X. Yang, and Y. Xiao, “Analytical method for Yrast line states in interacting Bose–Einstein condensates,” Phys. Rev. Lett. 86, 2200 (2001).
[CrossRef]

T. Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655 (2012).
[CrossRef]

Science (London) (1)

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science (London) 323, 598–601 (2009).
[CrossRef]

Other (3)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2007).

M. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic picture of fiber coupled cavity arrays. This model consists of an N-coupled atom-cavity system which is connected by N-1 fibers. Each atom-cavity system can be treated as a polaritonic qubit due to the blockade effect.

Fig. 2.
Fig. 2.

Concurrence and discord of two qubits are plotted as functions of time t for n1=0.2 and n1=1 with n2=0, N=3, and the initial state is |ψ(0)=|GGG.

Fig. 3.
Fig. 3.

Concurrence and discord of two qubits are plotted as functions of time t for n1=0 and n1=0.2 with n2=0, N=3, and the initial state is |ψ(0)=|EEE.

Fig. 4.
Fig. 4.

Spin squeezing of the system plotted as functions of time t for different initial states with N=3 and n1=n2=n.

Fig. 5.
Fig. 5.

Concurrence and discord of two qubits are plotted as functions of time t for n2=0.2 and n2=1 with n1=n3=n4=0, N=5, and the initial state is |ψ(0)=|GGGGG.

Fig. 6.
Fig. 6.

Concurrence and discord of two qubits are plotted as functions of time t for n2=0.2 and n2=1 with n1=n3=n4=0, N=5, and the initial state is |ψ(0)=|EEEEE.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

H=H0+Hat-cav+Hcav-fib,
H0=j[ωj2(|eje||gjg|)+ωjajaj]+j,ανjαbjαbjα,
Hat-cav=jNg(aj|gje|+h.c),
Hcav-fib=j,αξjα(ajbjα+aj+1bjα+h.c),
|n,±j=12(|n,gj±|n1,ej),
Heff=H0eff+HIeff,H0eff=ω2jσjz+j,ανjαbjαbjα,
HIeff=j,α(gj1ασjbj1α+gjασjbjα+h.c),
dρsdt=L[ρs]=jγjnj[2(σj++σj+1+)ρs(σj+σj+1)(σj+σj+1)(σj++σj+1+)ρsρs(σj+σj+1)(σj++σj+1+)]+jγj(nj+1)[2(σj+σj+1)ρs(σj++σj+1+)(σj++σj+1+)(σj+σj+1)ρsρs(σj++σj+1+)(σj+σj+1)],
C=max{0,λ1λ2λ3λ4},
I(ρAB)=S(ρA)+S(ρB)S(ρAB).
ρBiAB=1pi(IBi)ρAB(IBi),pi=Tr((IBi)ρAB(IBi)),
S(ρAB|{Bi})=ipiS(ρBiAB).
I(ρAB|{Bi})=S(ρA)S(ρAB|{Bi}).
J(ρAB)=sup{Bi}I(ρAB|{Bi})=S(ρA)min{Bi}[S(ρAB|{Bi})].
D(ρAB)=I(ρAB)J(ρAB).
ξs2=4(ΔJ)min2N,
ξs2=2N[(J⃗n⃗12+J⃗n⃗12)(J⃗n⃗12J⃗n⃗12)+4cov(J⃗n⃗1,J⃗n⃗2)],n⃗1=(sinϕ,cosϕ,0),n⃗2=(cosθcosϕ,cosθsinϕ,sinθ),θ=arccosJz|J⃗|,cov(x,y)=12(xy+yx)xy,
ϕ={arccosJx|J⃗|sinθ,Jy>0,2πarccosJx|J⃗|sinθ,Jy0.
dρs(t)dt=iTrB[V(t),ρs(0)ρB]TrB0dt[V(t),[V(t),ρs(t)ρB]].
V(t)=eiH0efftHIeffeiH0efft=j,α(eiΔj1αtgj1ασjbj1α+eiΔjαtgjασjbjα+h.c),
bjαbjα=njδjjδαα,
bjαbjα=(nj+1)δjjδαα,
α|gjα|2e±iΔjαt=α|gjα|2e±i(ωνjα)t=γjδ(t),
TrB0dtV(t)V(t)ρs(t)ρB=jγj[nj(σj+σj+1)(σj++σj+1+)+(nj+1)(σj++σj+1+)(σj+σj+1)]ρs,
TrB0dtV(t)ρs(t)ρBV(t)=jγj[(nj+1)(σj+σj+1)ρs(σj++σj+1+)+nj(σj++σj+1+)ρs(σj+σj+1)],
TrB0dtV(t)ρs(t)ρBV(t)=jγj[(nj+1)(σj+σj+1)ρs(σj++σj+1+)+nj(σj++σj+1+)ρs(σj+σj+1)],
TrB0dtρs(t)ρBV(t)V(t)=jγjρs[nj(σj+σj+1)(σj++σj+1+)+(nj+1)(σj++σj+1+)(σj+σj+1)].

Metrics