Abstract

An analytical approach for obtaining linear and nonlinear design parameters of microresonators is presented. The eigenmode/eigenfrequency problem of planar resonators is considered in detail, with an analytical closed-form approximation derived for resonators possessing a large radius to width ratio. The analysis permits the resonant frequencies and mode profiles to be determined together with the dispersion properties. The dependence of the effective nonlinear Kerr coefficient on the mode volume is further considered, and also the waveguide coupling together with estimates of the Q-value. Examples, which are in good agreement with numerical simulations, are presented for silicon resonators. The approach can be used for designing planar microring resonators for nonlinear four-wave mixing applications, such as optical Kerr frequency comb generation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription