Abstract

Photoelectric response in photorefractive LiNbO3:Fe crystals of different degrees of reduction is studied by means of photoinduced light scattering. Dependence of photovoltaic and diffusion parameters of the electric-charge transport versus the donor/acceptor concentration is determined from the scattering intensity distribution along the crystal polar axis. The contribution of nonequilibrium electric carriers is discussed. It is shown that the effective temperature of photoexcited electrons is nonlinearly dependent on the donor concentration.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Photorefractive Materials and Their Applications 1,2, P. Guenter and J.-P. Huignard, eds. (Springer, 2007).
  2. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391–407 (1997).
    [CrossRef]
  3. V. G. Brovkovich and B. I. Sturman, “Observation of nonequilibrium diffusion in LiNbO3 crystals,” Sov. Phys. JETP 37, 550–553 (1983).
  4. V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).
  5. M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
    [CrossRef]
  6. A. Crumins, Z. Chen, and T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
    [CrossRef]
  7. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
    [CrossRef]
  8. M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
    [CrossRef]
  9. M. Imlau, M. Goulkov, M. Fally, and Th. Woike, Polar Oxides: Properties, Characterization and Imaging (Wiley-VCH Weinheim, 2005).
  10. W. Philips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).
  11. I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673–1676 (1986).
  12. R. A. Rupp and W. Dress, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223–229 (1986).
    [CrossRef]
  13. B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive materials,” Phys. Rep. 275, 197–254 (1996).
    [CrossRef]
  14. V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
    [CrossRef]
  15. L. F. Kanaev, V. K. Malinovsky, and B. I. Sturman, “Investigation of photoinduced scattering in LiNbO3 crystals,” Opt. Commun. 34, 95–100 (1980).
    [CrossRef]
  16. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  17. G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
    [CrossRef]
  18. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
    [CrossRef]
  19. A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).
  20. H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
    [CrossRef]
  21. E. Kraetzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
    [CrossRef]
  22. E. Kraetzig and H. Kurz, “Spectroscopic investigation of photovoltaic effects in doped LiNbO3,” J. Electrochem. Soc. 124, 105–108 (1977).
  23. L. Solymar, D. J. Web, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Calderon, 1996).
  24. G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
    [CrossRef]
  25. S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
    [CrossRef]
  26. G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
    [CrossRef]
  27. W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
    [CrossRef]
  28. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, 1992).
  29. R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
    [CrossRef]
  30. A. P. Levanyuk, A. R. Pogosyan, and E. M. Uyukin, “Anomalously high Hall photocurrents in lithium niobate crystals,” Sov. Phys. Dokl. 26, 43–44 (1981).
  31. R. Sommerfeldt, L. Holtman, and E. Kraetzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
    [CrossRef]

2013 (1)

A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).

2012 (1)

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

2008 (1)

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

2002 (1)

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

1999 (1)

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

1998 (1)

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

1997 (2)

G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

1996 (1)

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive materials,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

1995 (2)

A. Crumins, Z. Chen, and T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

1994 (2)

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
[CrossRef]

1989 (2)

R. Sommerfeldt, L. Holtman, and E. Kraetzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).

1986 (3)

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673–1676 (1986).

R. A. Rupp and W. Dress, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223–229 (1986).
[CrossRef]

R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[CrossRef]

1983 (1)

V. G. Brovkovich and B. I. Sturman, “Observation of nonequilibrium diffusion in LiNbO3 crystals,” Sov. Phys. JETP 37, 550–553 (1983).

1982 (1)

1981 (1)

A. P. Levanyuk, A. R. Pogosyan, and E. M. Uyukin, “Anomalously high Hall photocurrents in lithium niobate crystals,” Sov. Phys. Dokl. 26, 43–44 (1981).

1980 (2)

V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

L. F. Kanaev, V. K. Malinovsky, and B. I. Sturman, “Investigation of photoinduced scattering in LiNbO3 crystals,” Opt. Commun. 34, 95–100 (1980).
[CrossRef]

1977 (3)

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

E. Kraetzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

E. Kraetzig and H. Kurz, “Spectroscopic investigation of photovoltaic effects in doped LiNbO3,” J. Electrochem. Soc. 124, 105–108 (1977).

1972 (1)

W. Philips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Amodei, J. J.

W. Philips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Anderson, D. Z.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

Baeumer, C.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

Balasubramanian, S.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Brovkovich, V. G.

V. G. Brovkovich and B. I. Sturman, “Observation of nonequilibrium diffusion in LiNbO3 crystals,” Sov. Phys. JETP 37, 550–553 (1983).

Bryan, D. A.

R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[CrossRef]

Buse, K.

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

Chen, G.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Chen, H.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Chen, Z.

A. Crumins, Z. Chen, and T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

Crumins, A.

A. Crumins, Z. Chen, and T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

Czaia, L.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

Ding, Y.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Dischler, B.

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Dorosh, I.

V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Dress, W.

R. A. Rupp and W. Dress, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223–229 (1986).
[CrossRef]

Efremenko, V.

A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).

Engelmann, H.

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Fally, M.

M. Imlau, M. Goulkov, M. Fally, and Th. Woike, Polar Oxides: Properties, Characterization and Imaging (Wiley-VCH Weinheim, 2005).

Feinberg, J.

Fridkin, V. M.

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, 1992).

Gaponov, A.

A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).

Gerson, R.

R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[CrossRef]

Gonser, U.

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Goulkov, M.

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive materials,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

M. Imlau, M. Goulkov, M. Fally, and Th. Woike, Polar Oxides: Properties, Characterization and Imaging (Wiley-VCH Weinheim, 2005).

Grunnet-Jepsen, A.

L. Solymar, D. J. Web, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Calderon, 1996).

Guenter, P.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

Haliburton, L. E.

R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[CrossRef]

Hesse, H.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

Holtman, L.

R. Sommerfeldt, L. Holtman, and E. Kraetzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

Imbrock, J.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

Imlau, M.

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

M. Imlau, M. Goulkov, M. Fally, and Th. Woike, Polar Oxides: Properties, Characterization and Imaging (Wiley-VCH Weinheim, 2005).

Jermann, F.

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

Jia, F.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Kanaev, L. F.

L. F. Kanaev, V. K. Malinovsky, and B. I. Sturman, “Investigation of photoinduced scattering in LiNbO3 crystals,” Opt. Commun. 34, 95–100 (1980).
[CrossRef]

Keune, W.

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kirchhoff, J. F.

R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[CrossRef]

Kiseleva, I. N.

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673–1676 (1986).

Kraetzig, E.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

R. Sommerfeldt, L. Holtman, and E. Kraetzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

E. Kraetzig and H. Kurz, “Spectroscopic investigation of photovoltaic effects in doped LiNbO3,” J. Electrochem. Soc. 124, 105–108 (1977).

E. Kraetzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

Kurz, H.

E. Kraetzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

E. Kraetzig and H. Kurz, “Spectroscopic investigation of photovoltaic effects in doped LiNbO3,” J. Electrochem. Soc. 124, 105–108 (1977).

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kuz’minov, Yu.

V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Lahiri, I.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Lemeshko, V. V.

V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).

Levanyuk, A. P.

A. P. Levanyuk, A. R. Pogosyan, and E. M. Uyukin, “Anomalously high Hall photocurrents in lithium niobate crystals,” Sov. Phys. Dokl. 26, 43–44 (1981).

Lin, A.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Liu, S.

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
[CrossRef]

Lu, Y.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Malinovsky, V. K.

L. F. Kanaev, V. K. Malinovsky, and B. I. Sturman, “Investigation of photoinduced scattering in LiNbO3 crystals,” Opt. Commun. 34, 95–100 (1980).
[CrossRef]

Melloch, M. R.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Montemezzani, G.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

Nolte, D. D.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Obukhovskii, V. V.

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673–1676 (1986).

Obukhovskiy, V. V.

V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).

Odoulov, S.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive materials,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

Odoulov, S. G.

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673–1676 (1986).

Palatnikov, M.

A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).

Philips, W.

W. Philips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Pogosyan, A. R.

A. P. Levanyuk, A. R. Pogosyan, and E. M. Uyukin, “Anomalously high Hall photocurrents in lithium niobate crystals,” Sov. Phys. Dokl. 26, 43–44 (1981).

Qiao, H.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Raeuber, A.

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Rupp, R. A.

R. A. Rupp and W. Dress, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223–229 (1986).
[CrossRef]

Shen, X.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Shi, L.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Shiosaki, T.

A. Crumins, Z. Chen, and T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

Sidorov, N.

A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).

Solymar, L.

L. Solymar, D. J. Web, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Calderon, 1996).

Sommerfeldt, R.

R. Sommerfeldt, L. Holtman, and E. Kraetzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

Staebler, D. L.

W. Philips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Stoyanov, A. V.

V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).

Sturman, B.

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive materials,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

Sturman, B. I.

V. G. Brovkovich and B. I. Sturman, “Observation of nonequilibrium diffusion in LiNbO3 crystals,” Sov. Phys. JETP 37, 550–553 (1983).

L. F. Kanaev, V. K. Malinovsky, and B. I. Sturman, “Investigation of photoinduced scattering in LiNbO3 crystals,” Opt. Commun. 34, 95–100 (1980).
[CrossRef]

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, 1992).

Sun, Q.

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

Syuy, A.

A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).

Tian, G.

Tkachenko, N.

V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Uyukin, E. M.

A. P. Levanyuk, A. R. Pogosyan, and E. M. Uyukin, “Anomalously high Hall photocurrents in lithium niobate crystals,” Sov. Phys. Dokl. 26, 43–44 (1981).

Voronov, V.

V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Vozniy, V. L.

V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).

Web, D. J.

L. Solymar, D. J. Web, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Calderon, 1996).

Woike, Th.

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

M. Imlau, M. Goulkov, M. Fally, and Th. Woike, Polar Oxides: Properties, Characterization and Imaging (Wiley-VCH Weinheim, 2005).

Wu, Y.

Xu, J.

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
[CrossRef]

Yan, W.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Zgonik, M.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

Zhang, G.

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997).
[CrossRef]

S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994).
[CrossRef]

Zhang, Sh.

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Zhang, X.

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Zozulya, A. A.

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Appl. Phys. A (1)

W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012).
[CrossRef]

Appl. Phys. B (4)

F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994).
[CrossRef]

R. A. Rupp and W. Dress, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223–229 (1986).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
[CrossRef]

Ferroelectrics (1)

R. Sommerfeldt, L. Holtman, and E. Kraetzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989).
[CrossRef]

J. Appl. Phys. (2)

R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986).
[CrossRef]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

J. Electrochem. Soc. (1)

E. Kraetzig and H. Kurz, “Spectroscopic investigation of photovoltaic effects in doped LiNbO3,” J. Electrochem. Soc. 124, 105–108 (1977).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Acta (1)

E. Kraetzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977).
[CrossRef]

Opt. Commun. (2)

L. F. Kanaev, V. K. Malinovsky, and B. I. Sturman, “Investigation of photoinduced scattering in LiNbO3 crystals,” Opt. Commun. 34, 95–100 (1980).
[CrossRef]

A. Crumins, Z. Chen, and T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

Optik. B (1)

A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).

Phys. Rep. (1)

B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive materials,” Phys. Rep. 275, 197–254 (1996).
[CrossRef]

Phys. Rev. A (1)

G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995).
[CrossRef]

Phys. Rev. B (2)

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002).
[CrossRef]

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

RCA Rev. (1)

W. Philips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Sov. J. Quantum Electron. (1)

V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980).
[CrossRef]

Sov. Phys. Dokl. (1)

A. P. Levanyuk, A. R. Pogosyan, and E. M. Uyukin, “Anomalously high Hall photocurrents in lithium niobate crystals,” Sov. Phys. Dokl. 26, 43–44 (1981).

Sov. Phys. JETP (1)

V. G. Brovkovich and B. I. Sturman, “Observation of nonequilibrium diffusion in LiNbO3 crystals,” Sov. Phys. JETP 37, 550–553 (1983).

Sov. Phys. Solid State (1)

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673–1676 (1986).

Ukr. J. Phys. (1)

V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).

Other (4)

Photorefractive Materials and Their Applications 1,2, P. Guenter and J.-P. Huignard, eds. (Springer, 2007).

M. Imlau, M. Goulkov, M. Fally, and Th. Woike, Polar Oxides: Properties, Characterization and Imaging (Wiley-VCH Weinheim, 2005).

B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, 1992).

L. Solymar, D. J. Web, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Calderon, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Absorption spectra for extraordinary (filled symbols) and ordinary (open symbols) in different LiNbO3:Fe samples. Samples are numbered according to the reduction degree. Number 1 corresponds to the as-grown crystal.

Fig. 2.
Fig. 2.

Intensity distribution induced with λ=488nm and measured at t=0τdi (rectangles), t=9τdi (triangles), and t=80τdi (circles) for LiNbO3:Fe samples with different concentration of Fe2+ ions: (a) 8.8×1017cm3, (b) 21×1017cm3, (c) 54×1017cm3, and (d) 55.6×1017cm3.

Fig. 3.
Fig. 3.

Intensity distribution induced with λ=532nm and measured at t=0τdi (rectangles), t=9τdi (triangles), and t=80τdi (circles) for LiNbO3:Fe samples with different concentration of Fe2+ ions: (a) 8.8×1017cm3, (b) 21×1017cm3, (c) 54×1017cm3, and (d) 55.6×1017cm3.

Fig. 4.
Fig. 4.

Scattering intensity versus t/τdi measured for LiNbO3:Fe samples with different concentration NFe2+=8.8×1017cm3 (sample 1, circles), 21×1017cm3 (sample 2, rectangles), 54×1017cm3 (sample 3, triangles aligned down), 55.6×1017cm3 (sample 4, triangles aligned up), at (a) λ=488nm and (b) λ=532nm. Data points are extracted from intensity profiles at the angle θsout=10°.

Fig. 5.
Fig. 5.

Angular dependence of the photovoltaic Epv and diffusion Ediff fields determined by applying Eqs. (4) and (5) to the curve (t=9τdi) from Fig. 3(a). Straight lines show the best fit by Epv=17.1kV/cm and by Eq. (3) with Te=1590°K, respectively.

Fig. 6.
Fig. 6.

Photovoltaic field Epv versus the acceptor concentration NFe3+ for λ=488nm (circles) and λ=532nm (rectangles).

Fig. 7.
Fig. 7.

Specific photoconductivity κ versus the donor-to-acceptor ratio NFe2+/NFe3+ for λ=488nm (circles) and λ=532nm (rectangles).

Fig. 8.
Fig. 8.

Photovoltaic coefficient β33 versus the donor concentration NFe2+ for λ=488nm (circles) and λ=532nm (rectangles).

Fig. 9.
Fig. 9.

Glass constant G versus the donor concentration NFe2+ for λ=488nm (circles) and λ=532nm (rectangles).

Fig. 10.
Fig. 10.

Effective electron temperature Te versus the donor concentration NFe2+ for λ=488nm (circles) and λ=532nm (rectangles).

Tables (1)

Tables Icon

Table 1. Donor NFe2+, Acceptor NFe3+ Concentrations, and Maxwell Relaxation Time τdi for λ=488nm, 532 nm of Investigated LiNbO3:Fe Crystals

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Γ±c=πλ1Epv(1Ediff/Epv)ne3r33cosθsincos(θsin/2),
Epv=jpv/σph=β33/κ=Gα/κ,
Ediff=(4πne/λ)(kBTe/e)sin(θsin/2),
Epv(|θsin|)=0.5λcosθsinπne3r33Lcos(θsin/2)ln4Isc(L,|θsin|)Is+c(L,|+θsin|)Isoc(L,|θsin|)Iso+c(L,|+θsin|),
Ediff(|θsin|)=0.5λcosθsinπne3r33Lcos(θsin/2)lnIsc(L,|θsin|)Iso+c(L,|+θsin|)Isoc(L,|θsin|)Is+c(L,|+θsin|),

Metrics